
Convergence of Power Methods

Qi Lei
(Dated: January 26, 2015)

Two versions of Power Method. One is the classical one, the other is with some noise.

Algorithm 1:
Input: Symmetric matrix A ∈ Rn, number of iteration L.
1. Choose x0 ∈ Rn.
2. For l = 1 to L:

(a) yl ←− Axl
(b) xl = yl/‖yl‖

Output: vector xL
Lemma: σ1 ≤ σ2,≤ · · · ≤ σn−1 < σn are the singular values of symmetric square matrix A. And z1, z2, · · · , zn are
the corresponding right eigenvectors. Denote tanθl = tanθ(zn, xl). Then we have tanθl+1 ≤ tanθl × σn−1/σn.
Proof. Suppose xl = cosθlzn + sinθlul. ul ∈ z⊥n .
Then

Axl = cosθlAzn + sinθlAul

= cosθlσnzn + sinθl‖Aul‖
Aul
‖Aul‖

Suppose ul =
∑n−1
p=1 αpzp, then Aul =

∑n−1
p=0 σpαpzp ∈ z⊥n , so

tanθl+1 =
sinθl‖Aul‖
cosθlσn

Now ‖Aul‖2 =
∑n−1
p=1 σ

2
pα

2
p ≤ maxn−1

p=1{σ2
p}

∑n−1
p=1 α

2
p ≤ σ2

n−1. So tanθl + 1 ≤ tanθl σn−1

σn
.

Algorithm 2:
Input: Symmetric matrix A ∈ Rn, noise added in each step gl, number of iteration L.
1. Choose x0 ∈ Rn.
2. For l = 1 to L:

(a) yl ←− Axl + gl
(b) xl = yl/‖yl‖

Output: vector xL
Lemma: σ1 ≤ σ2,≤ · · · ≤ σn−1 < σn are the singular values of symmetric square matrix A. And z1, z2, · · · , zn are
the corresponding right eigenvectors. Denote tanθl = tanθ(zn, xl). gl is the noise added in each iteration step. Then
tanθl+1 ≤ max{tanθl × σn−1/σn, tan〈zn, gl〉}.
Proof. Suppose xl = cosθlzn + sinθlul. ul ∈ z⊥n .
Then

yl+1 = Axl + gl = cosθlAzn + sinθlAul + gl

= cosθlσnzn + sinθlAul + gl.

2

Now suppose xl+1 = cosθl+1zn + sinθl+1ul+1, for some ul+1 ∈ z⊥n . Then

cosθl+1 = zTn xl+1 = (cosθlσn + zTn gl)/‖yl+1‖
sinθl+1 = uTl+1xl+1 = (sinθlu

T
l+1Aul + uTl+1gl)/‖yl+1‖.

tanθl+1 =
sinθl+1

cosθl+1

=
sinθlu

T
l+1Aul + uTl+1gl

cosθlσn + zTn gl

≤
sinθlu

T
l+1Aul + ‖gl‖sin〈zn, gl〉

cosθlσn + ‖gl‖cos〈zn, gl〉

≤
sinθlu

T
l+1Aul + ‖gl‖sin〈zn, gl〉

cosθlσn − ‖gl‖|cos〈zn, gl〉|

The above part is what appears in the paper and also from the webpage. So what we need to do here is to bound
both sin〈gl, zn〉 and cos〈gl, zn〉 from above, which means we need just to bound ‖gl‖. But this is not possible in our
case. So I think about change a little bit about the lemma to the lower part.

tanθl+1 ≤
sinθlu

T
l+1Aul + ‖gl‖sin〈zn, gl〉

cosθlσn + ‖gl‖cos〈zn, gl〉
(Suppose sin〈zn, gl〉, cos〈zn, gl〉 are positive.)

≤ max{sinθlσn−1

cosθlσn
,
sin〈zn, gl〉
cos〈zn, gl〉

}

= max{tanθl
σn−1

σn
, tan〈zn, gl〉}

Algorithm 2+:
Input: Symmetric matrix A ∈ Rn, selected row number r, number of iteration L.
1. Choose x0 ∈ Rn, y0 = x0.
2. For l = 1 to L:

(a) Kl is a random subset of {1, 2, · · · , n}, |Kl| = r, yl ←− yl−1, yl,Kl
←− AKl

xl
(b) xl = yl/‖yl‖

Output: vector xL
Remark: For some matrix of vector X, and set K ⊂ {1, 2, · · · , n},

XK = Xk1,k2,··· ,kr =


xk1

xk2

· · ·
xkr

 ∼



0
· · ·
0
xk1

0
· · ·
0
xk2

· · ·
xkr
0
· · ·
0


Some analysis: As in Algorithm 2, the difference between yl+1 and Axl could be considered as noise. The noise gl
produced by Algorithm 2+ could be denoted as

gl = yl+1 −Axl
= yl − yl,Kl

+AKl
xl −Axl

= (I − IKl
)yl + (AKl

−A)xl

= (A− ‖yl‖I){n}−Kl
xl

3

So

tan〈gl, zn〉 =
‖V T (A− ‖yl‖I){n}−Kl

xl‖
zTn (A− ‖yl‖I){n}−Kl

xl

=
‖V T{n}−Kl

(A− ‖yl‖I)xl‖
zTn,{n}−Kl

(A− ‖yl‖I)xl
(here V = [z1|z2| · · · |zn−1])

Some observations between different optimized ways and original power method:
1. uniformly sampled rows

Eventually it will converge. Intuitively, the expected performance of each iteration is just similar to power method
in the long run.

However, it may cost a little more time.
2.weighted sampled rows

The larger n is, the lesser λ1/λ2 is, the better weighted sampling performs.
Weight on dominant eigenvector is better than weight on the norm of A.

MATRIX COMPLETION INTUITION

f(x, y) = ‖A− ~x~yT ‖F
=

∑
i

∑
j

(aij − xiyj)2

=
∑
i

‖~ai − xi~y‖22

For individual i,

‖~ai − xi~y‖22
= ‖xi~y‖22 − 2xi~a

T
i ~y + ‖~ai‖22

= ‖~y‖22(xi −
aTi y

‖y‖22
)2 + ‖ai‖22 −

(aTi y)2

‖y‖22

Take xi =
aTi y

‖y‖22
, then f(x, y) reaches its minimum for individual xi, i = 1, 2, · · · , n, which is ‖ai‖22 −

(aTi y)2

‖y‖22
. And

f(x, y) correspondingly decreases ‖~y‖22(xi − aTi y

‖y‖22
)2, written as ∆fxi

.

Likewise, for individual yj , j = 1, 2, · · · , n, f(x, y) reaches its minimum when we take new yj
.
=

aTj x

‖x‖22
, and f(x, y)

correspondingly decreases ‖~x‖22(yj −
aTj x

‖x‖22
)2, written as ∆fyj .

• Greedy Coordinate Descent:
By comparing the potential decrease of f(x, y), we could apply Greedy Coordinate Descent to this approach. For

each step t, we update k entries of x(t) or y(t). Take x(t) as an example. x
(t+1)
Ω ← AΩy

(t)/|y(t)|2. Then ∆f
(t+1)
xΩ

vanishes to 0. And also ∆f
(t+1)
y = ‖x(t+1)‖22(y

(t)
j −

aTj x
(t+1)

‖x(t+1)‖22
)2. The whole process takes up to 4k+kn+2n flops.

