Convergence of Power Methods

Qi Lei
(Dated: January 26, 2015)

Two versions of Power Method. One is the classical one, the other is with some noise.

Algorithm 1:
Input: Symmetric matrix A € R™, number of iteration L.
1. Choose zg € R™.
2. Forl =1 to L:
(a) yi«— Az
(b) @ = wi/[luill
Output: vector xp,
Lemma: 0 < 09, < --- < 0,1 < 0, are the singular values of symmetric square matrix A. And 21,29, -- , 2z, are
the corresponding right eigenvectors. Denote tanf; = tanf(z,,x;). Then we have tan;11 < tanb; X op_1/0op.
Proof. Suppose x; = cosbt;z, + sinfju;. u; € z,f
Then

Ax; = cost Az, + sinf, Ay,
Aul

= COSGlUnZn + Slngl HAU[|| MTIH

-1 -1
Suppose w; = Y07 apzp, then Aup = 37070 0,02, € 2y, 50

sind; || Auy||

tanf11 =
cosboy,

Now || Aw||? = Zz;ll o2a? < max)_ {02} 22;11 ay < op_y. So tanb + 1 < tanf 72
Algorithm 2:
Input: Symmetric matrix A € R™, noise added in each step g;, number of iteration L.
1. Choose zg € R™.
2. For [=1 to L:
(a) yi+— Az + g
(b) 21 = /|
Output: vector xp,
Lemma: 01 < 09, < - < 0,1 < 0, are the singular values of symmetric square matrix A. And 21,20, -- , 2z, are
the corresponding right eigenvectors. Denote tand; = tand(z,,x;). ¢; is the noise added in each iteration step. Then
tanf;11 < max{tand, X o,_1/op, tan(z,, g1)}.
Proof. Suppose x; = cosfz, + sinfu;. u; € z;-.
Then

Y1 = Az + g1 = cos0i Az, + sind Au; + g
= co80,0, 2z, + sinb Au; + g;.

Now suppose xj41 = cos0;112n + sinbpy1upy1, for some w1 € z,f Then

costiir = zy a1 = (costhon + 2 gu)/ |y |

sind1 = w e = (sinfiu Au 4wl g0/ v -
sinf1

tanf, — 20

anbit cost 1

. T T
sinfu; Aup +up i

cosbio, + 2L g

sinfiul, | Aug + || gi|lsin(zn, gi)

IN

coston, + ||gillcos(zn, g1)
sinfyul, | Aug + || gillsin(zn, gi)

cosbyon, — ||gi||cos(zn, gi)]

The above part is what appears in the paper and also from the webpage. So what we need to do here is to bound
both sin{g;, z,) and cos(g;, z,) from above, which means we need just to bound ||¢;||. But this is not possible in our
case. So I think about change a little bit about the lemma to the lower part.

sinful, ; Aug + sin{z
tanHH_l 1 ! ”ng < nvgl>

(Su ose sin(z ,g1),COS8{Zn, gi) are OSitiVe.)
cosbon + || g1l cos(zn, g1) PP (2n: 91), c05(2n, g1) P

sindion_1 sin{zn, g

IN

max

}

On—1

()
cosOo, cos(zn, gi)
(2n, 91)

= maz{tand, stan(zn, gi)}

n

Algorithm 2+:
Input: Symmetric matrix A € R", selected row number r, number of iteration L.
1. Choose zg € R", yy = xp.
2. For [=1 to L:

(a) K; is a random subset of {1,2,--- n}, |Ki| =7,y <— yi—1, y1.k, $— A, T
() ze = wi/llwll
Output: vector zp,
Remark: For some matrix of vector X, and set £ C {1,2,--- ,n},
o]
0
xkl
0
xkl .
T
Xic = Xy kg, b = k2 ~ |0
] |
.Tkr
0
L O -

Some analysis: As in Algorithm 2, the difference between y;;1 and Az; could be considered as noise. The noise ¢;
produced by Algorithm 24 could be denoted as
g = Y1 — Az
= y—yx + Az — Az
= (I = Iy + (A, — Ay
= (A~ wll){ny—x, 1

So

IVE(A =yl fny—xc, 21l
t =
an<91,2n> ZT(— ||ylHI){n}7Kll$l

V-, (A = Iyl D)l
= =k (here V = [21]22| - |2n_1])

Zp tny— i (A = [l Dz

Some observations between different optimized ways and original power method:
1. uniformly sampled rows

Eventually it will converge. Intuitively, the expected performance of each iteration is just similar to power method
in the long run.

However, it may cost a little more time.
2.weighted sampled rows

The larger n is, the lesser A\;/)\y is, the better weighted sampling performs.

Weight on dominant eigenvector is better than weight on the norm of A.

MATRIX COMPLETION INTUITION

flay) = lA=a7"||F

ZZ A5 — zyj
Z ||55z‘ — il
7

For individual i,

lla@: — 13
= ”xzsz - 2551 ¥+ HQZHQ
” (afy)?
= 73 (s — 7)% + llasll3 —
o || ||2 Ty
T T 2
Take z; = Hyl\2’ then f(z,y) reaches its minimum for individual x;,4 = 1,2,---,n, which is ||a;||3 — % And
T
f(x,y) correspondingly decreases ||7]|3(z; — %)2, written as Af,.
2
T
Likewise, for individual y;, j = 1,2,--- ,n, f(z,y) reaches its minimum when we take new y; = I(\IJ b and f(z,y)
2

T
(Lj’t

correspondingly decreases ||Z|3(y; — |)%, written as Af, .

I3

e Greedy Coordinate Descent:
By comparing the potential decrease of f(x,y), we could apply Greedy Coordinate Descent to this approach. For

each step ¢, we update k entries of z(*) or y(*). Take z®) as an example. Z(H_l) — Aqy® /|ly®|2. Then Af(t'H)
(t41
vanishes to 0. And also Afyt“) 20|13 (MTHZ> The whole process takes up to 4k + kn +2n flops.

