
ELE 302: Building Real Systems

Professors: Andrew A. Houck and Antoine Kahn

Independent Project:
Ultrasonic Positioning System

Michael Danielczuk, Andrew Kim, Monica Lu, and
Victor Ying

Due Friday, May 15, 2015

Contents

1 Introduction 3

2 Multilateration 3
2.1 Time difference of arrival multilateration . 4
2.2 Position calculations . 4

2.2.1 A closed form solution? . 6
2.2.2 A least squares regression . 7

3 Hardware systems 8
3.1 Ultrasonics . 8

3.1.1 Ultrasonic transmitter stations . 9
3.1.2 Ultrasonic receivers for cars . 9

3.2 Serial radio communication . 12

4 Signals 12
4.1 Transmitted signals and synchronization . 13

4.1.1 Synchronization . 13
4.1.2 Sending Pings . 14
4.1.3 Timeouts and Error Checking . 15

4.2 Digital processing of received signals . 16
4.2.1 Digital filtering . 16
4.2.2 Timing . 18

5 Testing and debugging scaffolds 19

6 Performance and sources of bad data 20

7 Applications 21
7.1 Navigation . 21

7.1.1 H-Bridge . 21
7.1.2 General autonomous navigation . 22
7.1.3 Simpler navigation demonstration . 23

7.2 Mapping . 23

A C code compiled in PSoC Creator for car 26
A.1 main.c . 26
A.2 position.c . 28
A.3 drive.c . 35
A.4 speed.c . 37
A.5 steer.c . 47
A.6 shell.c . 54
A.7 usb uart.c . 60

1

B Arduino code for transmitter stations 64
B.1 Master transmitter station . 64
B.2 Slave transmitter stations . 68

C Arduino code for testing tools 71
C.1 tx test 2 . 71
C.2 tx test 4 . 73
C.3 rx test . 75

D MATLAB code for mapping 76

2

1 Introduction

Our indoor positioning system works by the same principle as a satellite navigation system,
with ultrasonic pings substituted for radio waves. Signals are transmitted from stations at
known locations, and signals traveling different distances to a given receiver will take different
amounts of time to get there. With enough information about distances to known locations,
the receiver’s position can be calculated. As the speed of sound at room temperature is a
mere 1126 feet per second, it is easy for general-purpose microcontrollers to measure the
timing of ultrasonic signals to a precision that would enable spatial resolution of better than
one foot. Our 25 kHz ultrasound has a wavelength of about half an inch, so if our receive
circuitry allows for timing of ultrasonic signals to within several cycles, we might expect to
achieve spatial resolution of a few inches. In fact, this is exactly what we observe.

The next three sections of this report document the design of the positioning system
at three levels of abstraction. First, at the highest level of abstraction, there is Section 2,
which explains the principles and mathematics of positioning used, assuming the ability
to measure differences in time of flight. The other two sections concern the hardware and
software systems needed to obtain these measurements. Section 3 discusses the physical
hardware systems we had to build, while Section 4 discusses the way the various components
of the system communicate and the signals and processing that are needed to get accurate
measurements of differences in times of flight.

2 Multilateration

A positioning system generally either relies upon the ability to either measure different
distances to known points (multilateration), or different angles to known points (multiangu-
lation). Multiangulation could be done by use of cameras or other angle-resolved sensors, but
using cameras located on mobile robots such as our cars would be difficult as each car would
need to process probably several different video feeds covering a 360 field of view and cor-
rectly identify beacons at known locations, and transform the apparent position of beacons
in the video frames to the angles in which the beacons are oriented. Additionally, putting a
bunch of cameras on every robot would be somewhat expensive. If doing multiangulation,
it may make more sense to have a fixed number of cameras at known locations processing
the angles it sees cars at. Unfortunately, this requires the cameras to actively track and
communicate with each and every robot, which does not scale well to many independent
robots.

Multilateration can be done by measuring the varying time of flight of signals between
receivers on the robots to be located and transmitter stations at known locations. The
benefit of this approach is that each receiver does not have to communicate any information
to any transmitter or any other receiver. If the transmitters are transmitting a known signal,
then the receiver can simply time the signals it receives to get information about the time
of flight of the signals.

3

2.1 Time difference of arrival multilateration

It might seem easy to measure distances simply by measuring the time from when a trans-
mitter’s microcontroller starts trying to transmit and the time the receiver circuitry sends a
detectable signal to a microcontroller on the car. Unfortunately, there are sources of delay
that would contribute to this time measurement other than the time it takes for the ultra-
sound to propagate through the air. The transmitting and receiving ultrasonic transducers
act as mechanical band-pass filters, as they are built to physically resonate at 25 kHz. They,
together with the more significant band-pass filter in the receiver circuitry, will add some
delay to the signal. We could carry out experiments to measure and correct for this delay,
but with the receive circuitry in particular, this would require either being careful with tol-
erances to ensure each receive amplification and filter circuit is similar enough to the next,
or individually characterizing and calibrating the correction term for different receivers. It
would also mean every receiver would need to be synchronized with every transmitter to
measure the time of transmission and time of receiving each signal on a shared clock, and
such synchronization generally requires two-way communication between the transmitters
and receivers, or one-way communication with known (or very small) latencies, which would
impact the ability of the system to scale as more receivers are added.

In the approach used in our system, as well as in satellite navigation systems, there is a
small fixed number of transmitter stations that are synchronized with each other and send out
signals at fixed known times relative to each other, but the receivers do not communicate
with the transmitter stations to synchronize their clocks. Knowing that the transmitters
are broadcasting certain signals at certain times, the receiver can simply observe the time
difference at which it sees signals from different transmitters to get a difference in the lengths
of the signals flights. Since all the transmitters have identical hardware and are sending out
the same sort of signal, and these signals are received through the same receiver hardware
for each receiver, any difference in the signals’ times of flight must be due to differences
in times of propagation of the ultrasound through the air. This has the advantage that
the receiver does not need to communicate with the transmitter stations in any form to
synchronize its clock with their clocks. In general, calculating position using a time difference
of arrival measurements requires one more measurement (i.e., one more transmitter) than
using absolute time of flight measurements. However, adding one more transmitter station
that is identical to the rest requires no additional hardware design, so it is a small fixed cost
to pay for making the positioning system more scalable, as, without the need to synchronize
receivers, now there can be any number of receivers which do not need to interact with each
other or the transmitters to calculate their individual positions.

2.2 Position calculations

The problem of multilateration based on time differences of arrival was explored and solved
in the context of “sound ranging”, a practice used beginning in World War I to locate enemy
artillery by comparing the time at which the sound of the enemy guns firing reached sound
recording devices placed at known locations along the front. In sound ranging, the enemy

4

guns at an unknown position were the transmitters of the sound signal. For our case, the
transmitter stations are at known locations and the receiver’s position is what we wish to
know, but the ideas in the math are the same.

We place the transmitters in a rectangle of known width X and length Y . The trans-
mitters are arbitrarily numbered zero through three going counterclockwise, starting in the
third quadrant. The origin of our coordinate system is arbitrarily placed below the center
of this rectangle along the z-axis, at the height of the car receiver. The receiver is at a point
(x, y, 0). Let Z be the height of the transmitter plane above the height of the receiver; this
is known because the car travels only on the flat floor. x and y are the unknowns we wish
to calculate.

Figure 1: Our coordinate system.

We can write the measurements the receiver takes as being the difference between each
distance to transmitters one through three and the distance to transmitter zero:

∆1 = D1 −D0 =

√(
x− X

2

)2

+

(
y +

Y

2

)2

+ z2 −

√(
x+

X

2

)2

+

(
y +

Y

2

)2

+ z2

∆2 = D2 −D0 =

√(
x− X

2

)2

+

(
y − Y

2

)2

+ z2 −

√(
x+

X

2

)2

+

(
y +

Y

2

)2

+ z2

∆3 = D3 −D0 =

√(
x+

X

2

)2

+

(
y − Y

2

)2

+ z2 −

√(
x+

X

2

)2

+

(
y +

Y

2

)2

+ z2

5

Given that we can measure ∆1, ∆2, and ∆3, we wish to solve these three equations for the
two unknowns x and y. In the next two subsections, we will discuss two approaches to this
calculation that we tried.

A Mathematica notebook file showing the derivations of all the formulas discussed be-
low can be found at https://github.com/YingVictor/ultrasonic-positioning/raw/

master/MultilaterationDerivationMathematica.nb. The exact implementation of these
calculations in software can be found in the file position.c located in appendix section A.2.

2.2.1 A closed form solution?

The problem is overdetermined, but if we treat Z as an additional unknown, it turns out this
problem has a closed-form solution that can easily be found using computer algebra software
such as Mathematica:

x =
∆1(∆2 −∆3)(∆1 −∆2 −∆3)

2X(∆1 −∆2 + ∆3)

y =
∆3(∆2 −∆1)(∆3 −∆2 −∆1)

2Y (∆1 −∆2 + ∆3)

Z = ± 1

2XY (∆1 −∆2 + ∆3)

[
X2Y 2

(
∆2

1 + (∆2 −∆3)
2
) (

∆2
3 + (∆2 −∆1)

2
)

−X2
(
∆2

3(∆1 −∆2)
2(∆1 + ∆2 −∆3)

2 +X2Y 2(∆1 −∆2 + ∆3)
2
)

− Y 2
(
∆2

1(∆3 −∆2)
2(∆3 + ∆2 −∆1)

2 +X2Y 2(∆1 −∆2 + ∆3)
2
)] 1

2

This geometry gives fairly simple closed form solutions for x and y, and we can throw
away the calculation for Z. The solution can be calculated directly except for the locations
where the denominator tends to zero. This only occurs when ∆1−∆2+∆3 → 0. Substituting
in the definitions of ∆1, ∆2, and ∆3 and simplifying, it can be demonstrated that this only
occurs when x → 0 or y → 0, which, intuitively, is when the receiver is equidistant from
some of the transmitters. When calculating our position we can first check for these two
cases and change the calculation appropriately. Specifically, if ∆1 ≈ 0, then we can estimate
our position as

x =0

y =
∆3∆2

2Y

Z =± 1

2Y

√(
∆2

3 − Y 2
) (
Y 2 −∆2

2

)
−X2Y 2

And if ∆3 ≈ 0, then we can estimate our position as

x =
∆1∆2

2X
y =0

Z =± 1

2X

√(
∆2

1 −X2
) (
X2 −∆2

2

)
−X2Y 2

6

https://github.com/YingVictor/ultrasonic-positioning/raw/master/MultilaterationDerivationMathematica.nb
https://github.com/YingVictor/ultrasonic-positioning/raw/master/MultilaterationDerivationMathematica.nb

This calculation turns out to work decently. Unfortunately, by treating Z as an unknown,
we are throwing away information rather than making use of all the information we have
to get a better approximation. We could actually calculate the value of Z and compare
it against the known value as a sort of sanity check to help throw out bad measurements,
but the calculation for Z is sufficiently complex that it seemed not worth the trouble. This
particular solution tends to magnify errors in measurement, particularly near the x- and
y-axes where certain factors in both the numerators and denominators become very small
and measurement errors can change these factors substantially. Using the approach just de-
scribed where near the x- and y-axes we switch to a different approximation, the positioning
calculation becomes discontinuous, so the errors one sees are not always locally consistent as
one moves around in a small area. The entire problem of position calculation could be ap-
proached in other ways that do not give closed-form solutions but require iterative numerical
approximation methods.

2.2.2 A least squares regression

In an overdetermined problem, a common approach to finding an approximate solution is to
minimize some metric that is the sum of some squares of errors. Actual GPS receivers do
this, and, with some encouragement from Prof. Houck, we ended up doing this as well. In
particular, the metric we minimized was

f(x, y) =
(

∆1 − ∆̂1(x, y)
)2

+
(

∆2 − ∆̂2(x, y)
)2

+
(

∆3 − ∆̂3(x, y)
)2

and so the problem we were solving was

arg min
x,y

f(x, y)

where ∆n indicates the actual measured differences described earlier, and ∆̂n(x, y) indicates
the expected value for ∆n given particular values of x and y. If you review how we defined
the ∆n, you may notice that all of these deltas are with respect to D0, the distance to
transmitter zero located at (−X

2
,−Y

2
, Z). This may seem like we have arbitrarily chosen

to give more weight in the errors to this first distance. In fact this choice seems sensible
in the context of how the transmitters synchronize, which is potentially a significant source
of errors. As discussed in Section 4.1, TX0 is the master that determines when ultrasonic
signals should begin being sent out, and the other transmitters follow its lead.

The method of minimization that we use is essentially Newton’s method. Given a guess
r = (x, y), we calculate the next guess as

rnext = r− αf(r)∇f(r)∥∥∇f(r)
∥∥2

where the factor α = 0.1 is used to keep the guess from moving too far too quickly, which
can lead to overshoot and failure to converge. The values of f and ∇f can be calculated

7

exactly at each point (x, y), as f and its partial derivatives have perfectly cromulent closed-
form expressions in terms of x and y. The expressions are quite large to write out, and
so have been left out here, but many terms and factors, such as the expected distances
between the four transmitter stations and the point (x, y), appear repeatedly, so they can
be calculated once and reused in the calculations in software. The exact calculation can be
seen in appendix section A.2.

If at any point ∇f(r) = 0, that is, if both partial derivatives of f are zero and we
have reached a stationary point, we stop the iterative minimization method. Otherwise, we
continue iterating to get better approximations for x and y until either 100 iterations have
been performed, which is generally more than enough, or the value of the metric f drops
below 0.01 ft2, at which point it is sufficiently small that we don’t care to keep performing
the iterative minimization.

Minimizing this error metric has the useful benefit that, if we find the value of the metric
is very close to zero, we can be quite confident that we are basing our position calculation
off of good measurements. Conversely, if the metric is large after the minimization, then
we may wish to throw this set of measurements and calculation away, as the measurements
themselves may have been suspect. Sources of bad measurements from ultrasonic signals
are discussed in Section 6. In our experience, when the receiver is stationary, our position
calculations always give a consistent position to within a third of a foot, and the value of the
error metric at that minimum is generally less than 0.1 ft2. (The value of the metric at the
minimum is, in general, likely to be smaller than the square of the actual error because the
metric at the minimum is in general appreciably smaller than the metric evaluated at the
correct (x, y) values.) In our code, we check that the minimized value of the error metric is
less than 0.5 before recording and reporting the new calculated position. If this check fails,
we simply throw the current measurement away.

3 Hardware systems

3.1 Ultrasonics

We decided to use 25 kHz ultrasonic signals for this project. This frequency is far enough from
the typical 40 kHz used by the ultrasonic rangefinders commonly used by hobbyists for us to
be confident that we would avoid picking up the rangefinder pings from other robots in the
room using ultrasonic rangefinding, which might otherwise interfere with our positioning. We
decided to use a lower ultrasonic frequency rather than a higher one because lower frequencies
experience less attenuation traveling through the air. A lower frequency and hence a longer
wavelength might sacrifice spatial resolution, but it was felt early on in the design process
that maximizing the chances that we would be able to receive ultrasonic signals from across
the room was a much greater concern. We decided to buy simple ultrasonic transducers
so we could design circuits ourselves to maximize the range of our system. To this end,
we purchased Prowave 250ST180 and 250SR180 transducers, which are the versions of the
18 mm diameter ultrasonic transducers offered by Prowave, optimized for transmission and

8

reception, respectively. These ultrasonic transducers cost less than $8 each, but were still
relatively expensive compared to other common ultrasonic transducers that might cost only
a couple dollars. They were chosen for their relatively high advertised sensitivity and sound
pressure level.

3.1.1 Ultrasonic transmitter stations

Figure 2: XBee radio module mounted to an Arduino, which connects to an ul-
trasonic transmitter. Note the use of the book-based precision mounting system.

We used an Arduino Uno as a low-cost microcontroller for our transmitter stations, which
need to communicate with each other for synchronization purposes and control the Prowave
250ST180 ultrasonic transducers. The Prowave 250ST180 is simply connected directly to
two digital output pins of the Arduino, which are capable of outputting 0 or 5 V. The reason
we use two output pins rather than, for example, one output pin and ground, is that we can
drive the two output pins as the inverse of each other, effectively doubling our amplitude.
This is discussed further in section 4.1.2. We observed this improved our reception range a
little bit in testing.

3.1.2 Ultrasonic receivers for cars

When receiving ultrasonic signals from across the room, we typically see the Prowave
250SR180 transducer produce signals on the order of a millivolt, and sometimes even lower.
To be able to read this signal using a PSoC and to get rid of unwanted noise requires signif-
icant amplification and filtering. The circuit we ended up with for this purpose is shown in
Figure 3.

9

Figure 3: Schematic of ultrasonic receiver amplification and filtering circuitry.

Figure 4: Photograph of ultrasonic receiver amplification and filtering circuitry.

We spent a while trying to build our own differential amplifiers with voltage gain on the
order of hundreds, using general purpose op-amps. We repeatedly found that the noise was
intolerably bad, it was easy to produce unstable circuits when trying to make the gain so
large, and, ultimately, when we got past those problems, we rediscovered the limitations
of gain-bandwidth products. After all, to give our 25 kHz signal a gain on the order of a
thousand would require gain-bandwidth product on the order of 25 MHz! Finally under-
standing the amplifier chip specifications we needed to be looking for to provide large gain
at ultrasonic frequencies, we went of in search of a solution, and found that the LM386 audio
amplifier chip was readily available. This chip takes a differential input biased to ground,
and produces and output referenced to half the power supply, with a gain that be set between
20 and 200. As it is designed for audio, it works just fine for our 25 kHz signal, which is just
barely above the upper limit for human hearing. It works extremely well providing a large

10

first stage of amplification with the gain set to 200.
After the initial amplification, we were seeing a decent amount of both 60 Hz noise and

high frequency noise in the signal. we wished to put our signal through band-pass filtering
to reduce those low and high frequency noises, as well as provide additional amplification to
bring the signal up to the level of whole volts. To do this, we decided to build a Sallen–Key
band-pass filter, which is a common topology for an active filter that in general provides non-
unity gain, which is desirable in this case. This filter theoretically has a center frequency
of 24.7 kHz, a Q factor of about 11, voltage gain of about 32 at the center frequency. We
found some TLV2462 dual op-amp chips to use that have a gain-bandwidth of about 6 MHz,
which is sufficient. In practice, due to poor tolerances in the components, the Q factor and
the gain both tend to be lower than the theoretical value, but the gain in all the versions of
this circuit that we built was above an order of magnitude at 25 kHz, and it showed a decent
ability to reject of 40 kHz signals, which we might pick up from ultrasonic rangefinders used
in other projects. Perhaps more importantly, it did quite a good job filtering out 60 Hz and
high frequency noise, producing a fairly clean waveform. As the amplification is relative to a
reference voltage of half the power supply, the maximum amplitude we can get in the output
is half the power supply, or 2.5 V. The two amplification stages together have a voltage gain
of several thousand which is usually enough to get clipping of the received signal. Clipping
is not a problem in our context, so this is fine.

Figure 5: Ch1 (Yellow): Output of the Sallen–Key band-pass filter. Ch2 (Blue):
Output of DC offset subtractor, after the envelope detector.

After the amplification and filtering, we have a fairly straightforward envelope detector
to demodulate the signal that uses an ordinary silicon diode. After the envelop detector,
we subtract off the DC offset in order to get a signal that is referenced to ground. This is
essentially achieved using a AC coupling capacitor in the signal line and a pull-down resistor
to ground on the output. However, if the DC offset subtraction consisted of only those two
components, it would pull the average level of the output to ground, and the output would
range from positive to negative voltages, and the voltage of the top and bottom of pulses in

11

the signal would vary depending on the timing and durations of the pulses. To prevent this,
a 1N34A germanium diode was added between the output and ground to limit the output so
that it cannot drop far below ground. In particular, it cannot drop below ground by more
than the turn-on voltage of the diode. A germanium diode was chosen because of its low
turn-on voltage. This has the effect of keeping the parts of the signal that are low close to
ground, and the pulses from when ultrasonic pings are received are all to positive voltages.
A captured waveform demonstrating the function of the envelope detector and DC offset
subtractor is shown in Figure 5.

3.2 Serial radio communication

To synchronize all of the transmitters, we needed a system of communication between the
transmitters with either very low or very stable latency. A logical wireless communication
choice, due to its relative simplicity was the XBee 802.15.4 (series 1) radio module from Digi.
In contrast, we could communicate with a transport protocol such as TCP or UDP over an
internet connection using WiFi, but with such a heavy protocol stack, it becomes difficult
to reason about the sources of latency and to know whether latency is symmetric, and in
all likelyhood the latency would be highly variable depending on contention for the WiFi
bandwidth available in the room. XBee modules are essentially just modems that translate
between RS-232 on a physical wire and the 802.15.4 wireless communication standard. They
can be configured for point-to-point communication, but even easier is just to have all the
transmitter stations XBee modules on the same channel, so that each character sent by one
transmitter station is broadcast and received by all the others. While the configuration
tool for XBee modules can be strangly finicky, once the XBees are configured, using them
to communicate could not be simpler: they merely need to be provided with 5 V power
and ground, and connected with two wires for sending and receiving data. Since we were
able to obtain a exclusive channel for use in the lab, and since we are not sending much
data between the transmitter stations, there is little contention in our radio communication
network, and we do not expect latencies to vary due to data being held in buffers, waiting
to be transmitted. As shown in Figure 2, each transmitter station has an Arduino with a
shield connecting it to an XBee module. We were able to use the Arduino SoftwareSerial
library to communicate between each Arduino via the XBees.

4 Signals

Measuring varying time of flights of a transmitted signal could be done by measuring the
phase of a periodic signal, or calculating and finding the maximum of a cross correlation
function between the received signal and the signal the transmitter is known to have trans-
mitted, for some arbitrary transmitted signal. GPS works using the latter approach with
pseudorandom signals, as this maximizes the time resolution of the time of flight measure-
ments. In our case, we felt it would not be feasible to encode much information in the signals
we send out, as there is a fair amount of distortion and echoing as the sound travels through

12

the air, as well as ringing in the transmitter and receiver that would distort the signal.
Therefore, we took a much simpler approach: we measure the time of the first rising edge
for each ultrasonic ping signal received. This time should correspond to the time it took for
the ultrasonic ping to travel the line-of-sight distance between the transmitter station and
the receiver. The exact duration of echos and ringing after the first rising edge then does
not matter.

4.1 Transmitted signals and synchronization

To allow the car to know where it was in the room, we developed a system of four transmitters
stations, one in each corner of the room, that send ultrasonic pulses at well-defined intervals.
Each of the transmitters is pointed towards the opposite side of the room. This is because
the transmitter is directional, that is, the strength of the signal depends on the angle of
transmission. In this configuration, the receiver will be able to receive the pings if they
are directly underneath the transmitter simply because the signal is stronger close to the
transmitter, and if they are further away, the angle will help improve reception. If the
last three pulses are sent at known times with respect to the first pulse during each series
of pulses, then the time differences of arrival of each pulse at the receiver can be used to
determine the car’s position. Thus, all of the transmitters need to be synchronized such that
they always send an ultrasonic pulse at the same time with respect to the first pulse, sent by
the master transmitter. All of the code for the transmitter stations is given in Appendix A.4.

4.1.1 Synchronization

While radio waves are fast, XBee communication has latency much higher than the time for
the propogation of radio waves. To ensure synchronization, the first step was to determine
the latency in serial communication between the master transmitter and each of the slave
transmitters. To find the latencies, the master transmitter sends a character (either ‘a’, ‘b’,
or ‘c’, depending on which slave transmitter it wishes to communicate with) to the radio
channel, then waits to receive the same character in return from the correct slave trans-
mitter. Each slave transmitter is programmed to immediately respond to its own lowercase
character (again ‘a’ for the first slave transmitter, ‘b’ for the second, and ‘c’ for the third)
by transmitting the same character back to the channel. The master transmitter is then
able to calculate the round-trip latency by keeping track of the time to send and receive
the character. We found typical round-trip latencies to vary from about 17 ms to 20 ms.
We suspect much of this time is due not necessarily to the XBees, but to the software and
hardware stack on the Arduino that sends and receives RS-232. The master transmitter
tests the round-trip latency for a slave transmitter five times, and divides the total of the
round-trip latencies by ten to get an estimate for the one-way latency to each slave transmit-
ter station. It then transmits another character, this time an uppercase letter corresponding
to the slave transmitter it wishes to communicate with (‘A’ for the first slave transmitter,
‘B’ for the second, and ‘C’ for the third). Upon sending the uppercase character, the master
transmitter then sends a series of four bytes encoding what it measured the one-way latency

13

for the slave transmitter to be. The slave transmitter then sends back an acknowledgment
character (the same uppercase character that it received from the master to start the trans-
action) to tell the master that it has received all of the bytes. We make the assumption here
that the round-trip latency is symmetric — that the time taken to transmit from master to
slave is the same as to transmit from slave to master. Since all the transmitter stations have
identical hardware, we find this assumption to be quite reasonable, and we did a few quick
tests to confirm the assumption. When repeated for each of the three transmitters (five
round-trip latency tests and transmission of the average one-way latency time), this process
ensures near-perfect synchronization. Although latencies can occasionally change, we found
that they usually stayed relatively constant when the transmitter stations are not being dis-
turbed, meaning the average round-trip latency is not skewed and the one-way latencies are
fairly accurate.

4.1.2 Sending Pings

With the latency measurement and communication process completed, the master transmit-
ter sends out a lowercase ‘p’ over its XBee to the other transmitters to tell them that it is
about to send a pulse. It then sends out its ultrasonic pulse, using two pins connected to
the actual ultrasonic transmitter via a twisted pair. To gain more control over the ultrasonic
pulse output, we used low-level pin manipulation to turn the pins of the Arduino connected
to the ultrasonic transmitter on and off. In this way, we were able to simultaneously turn on
one pin while turning off another, which cannot be done using the standard digitalWrite()
command. The two pins are turned on and off opposite to each other, allowing for twice
the voltage range. One pin would be switched on to +5V while the other was switched
to ground, and then vice versa. With this manipulation, the differential signal sent to the
ultrasonic transducer is a square wave with peak to peak voltage of 10V, double what we
would achieve if we tied one pin of the transmitter to ground and only switched the other
one. We also have good control over timing using this method, as one very fast register write
switches both pins, and can use this control to send the pings at exactly 25 kHz, the optimal
rated frequency for the transmitters and receivers that we purchased.

When the master sends out the ‘p’ character followed by its ping, each of the slave
transmitters receive the ‘p’ character a few milliseconds later according to their respective
latencies. They can then start timing how long it has been since the master transmitter first
began transmitting its ping. Once the required time has elapsed (100 ms intervals between
each ping), the slave transmitter begins transmitting its ping through the same low-level pin
manipulation discussed above. Thus, the first slave transmitter waits 100 ms after receiving
the send pulse character from the master minus the known latency time that it has received
from the master plus a small amount of processing time due to the fact that the master must
first write the ‘p’ character and then send the ping (the actions are not simultaneous on the
master end). Each consecutive slave transmitter waits an extra 100 ms more before sending
its pulse, again subtracting the known latency time and adding the processing delay. 100
ms was chosen as the delay time between each ping because while the transmission of the
ping itself lasts only 5 ms, the echoes created from the signal bouncing around the room

14

cause the received signal to stretch out much more, sometimes up to about 25 ms, and if
the receiver is accross the room from one transmitter while very close to another, the signal
from the transmitter far away could take as much as 30 ms longer to reach the receiver. We
want enough time between pings received such that there is no doubt about the reception
of each ping, so 100 ms is a safe period of time between transmissions. The overall result is
four 25 kHz ultrasonic pings sent out 100 ms apart.

After one cycle of four pings sent out, the master then waits 300 ms before beginning
the next cycle of latency tests and pings. This delay is necessary to allow the receiver to
distinguish which ping is the ping sent from the master transmitter and which are the pings
sent from each of the slave transmitters: TX0, the master transmitter, always transmits
first after a quiet period of at least a few hundred milliseconds. Thus, the total cycle time
between when the master sends one of its pings and the next must be greater than around
500 ms assuming the 100 ms between pings so that the receiver can distinguish the master
ping based on the longer delay time between the last ping and the master ping as compared
to the normal 100 ms time between pings. Since the latency tests also take time, in the
final version of our system, the transmitters send out a round of pings every two thirds of a
second or so. However, if improvements were to be made to speed up the transmission such
as to get more position calculations per second on the receiving end, both the delay between
pings and the delay between sets of pings could be reduced. Also important is that the slave
transmitters sit idle after transmitting their ping. Thus, the master can begin doing latency
testing on the first slave transmitter immediately after it sends its ping but before the second
slave transmitter sends its ping, effectively interweaving pinging and latency testing so that
latency tests do not impinge on the total timing of the system. In effect, then, the overall
frequency of transmission cycles is only limited by the pulse-stretching experienced by the
receiver and the time needed to distinguish the master ping, not by latency test times.

4.1.3 Timeouts and Error Checking

As a note, we found that bytes are sometimes lost over the course of communicating between
devices on the radio channel. This loss can be an issue if it causes the system to hang while,
for example, the master looks for an acknowledgment from one of the slaves or one of the
bytes containing the latency time is never received by the slave. To combat this issue, we
created a timeout structure; if the master is ever waiting for a response from one of the
slaves (either an acknowledgment or as part of a latency test), it will automatically timeout
after 50 ms. If the timeout occurs while testing for latency, then that test is thrown out and
not counted as part of the averaging. If an acknowledgment is not received, the master will
simply move on without it. On the slave side, a timeout can also occur when receiving the
bytes corresponding the latency from the master. If one of these bytes is lost, the slave simply
uses the last known latency time and ignores the corrupted new data. This error checking
and timeout structure helps to make the system more robust so that if a transmitter turns
off or bytes are lost, the entire system can recover and continue operating without manual
resetting.

15

4.2 Digital processing of received signals

Figure 6: Programmable hardware used to capture timing information for po-
sitioning.

4.2.1 Digital filtering

Once the signal has been received, amplified, and filtered using the circuit described in sec-
tion 3.1.2, we are left with the signal shown as the yellow waveform in Figure 7. To turn
this waveform into a series of four clean square pulses so that timing can easily be done re-
quires several pieces of programmable hardware. The schematic detailing the programmable
hardware and connections referenced in this section can be found in Figure 6.

The first step was to use a comparator to turn the analog input into a series of digital
pulses so that the edge time was rigidly defined and voltage levels could be raised even
further from about the peak 2V received to 5V. We used a comparator level of 0.7V, high
enough to avoid the comparator staying high for various echoes of the pings that had been
sent out, but low enough to give accurate timing, since we want to record when the ping first
reaches the receiver. This level of 0.7V was generated with an 8-bit voltage digital-to-analog
converter. The output after the comparator step is shown as the blue waveform in Figure 7.

As is evident from the waveform representing the output of the comparator, due to the
inconsistent nature of the analog waveform being received, further processing is necessary
to generate a single pulse corresponding to the reception of each ping. Thus, we have a

16

Figure 7: Ch1 (Yellow): Output from the receiver circuitry that is fed into the
PSoC. Ch2 (Blue): Output of the comparator.

Figure 8: Ch1 (Yellow): Output of the comparator. Ch2 (Blue): Output of the
filtering system that is fed into the timer.

system of two glitch filters to further refine the signal so that it is suitable for timing. A very
useful, but somewhat unknown component, the glitch filter can be used either to eliminate
small dips in a high signal or short spikes in the midst of a low signal. The former can be
done by setting the glitch filter to bypass high mode such that its output remains high for
a set period after seeing a high value while the latter can be achieved in the normal mode,
equivalent to bypass low.

The first glitch filter (CompGlitchFilter in Figure 6), set to normal mode, directly takes

17

the output of the comparator as input and has a very short period of only 40 µs, which is
the period of a 25 kHz signal. This eliminates possible spikes that do not correspond to
pings, possibly generated from small amounts of noise. However, it will not eliminate any
significant part of the pings, since they always last longer than 40 µs for the initial spike
when they are received.

The second glitch filter is made up of two components, an edge detector and a counter
(labeled GlitchCounter in Figure 6). This glitch filter removes the occasional times when
the signal goes low in the middle of the ping signal, as seen in the comparator waveform
(yellow) in Figure 8. We made our own glitch filter out of two components here due to a
limitation of the Glitch Filter component available in PSoC Creator: it can only maintain a
moving window of length at most 256. Thus, with a clock at 1 MHz, its maximum filtering
time would be only 0.256 ms, much shorter than a possible drop in the signal, which we have
measured at up to 10 ms in length. To allow for a longer filtering time, the clock can be
slowed, but this could cause a loss of precision in our timing measurements, since we ideally
want a filtering time of about 25 ms (or about twice as long as possible drops in the signal),
which would require a clock speed of about 10 kHz. With a 10 kHz clock speed, timing is
only accurate to 0.1 ms, corresponding to about one tenth of a foot. That’s not so bad at
all, but it seems there’s no reason that timing should be even close to a limiting factor in
measurement precision. To get around this filtering length/measurement precision tradeoff,
we created our own glitch filter using an edge detector and a counter. The edge detector
outputs pulses on both edges of its input (essentially the output of the comparator). These
are used to reset the counter, so the counter is always counting the number of cycles of the 1
MHz clock that have passed since the last edge. The counter outputs a high pulse if its count
value is less than 25000 (corresponding to 25 ms with a 1 MHz clock). Thus, the output of
the counter goes high as soon as it gets the initial edge and stays high even as the signal drops
low for small periods of time. Since the high parts of the signal never last for more than 25
ms, this combination of components effectively imitates the function of a glitch filter. The
output of this two-part filter can be seen in Figure 8, where the yellow waveform represents
the input to the filtering (the comparator output) and the blue waveform represents the
output of the filtering system: four clean pulses.

4.2.2 Timing

Now all that is left is timing the positive edges of the filtered received signal. To do this,
we use a Timer component, named UltraTimer in Figure 6. Very conveniently, it can hold
a queue of four values before triggering an interrupt.

In case some bad input gets past the filter, to make sure the queue is empty when the
next round of pings starts, we reset the timer during the intervening quiet period between
each set of four pings. To identify that quiet period, we have a counter component named
UltraCounter that counts the number of cycles of a 1 MHz clock since the last time an
edge was seen in the received signal, much like GlitchCounter does. Unlike GlitchCounter,
UltraCounter counts up to a maximum value of 200000, or 200 ms. We use the terminal
count output of UltraCounter as a reset signal for UltraTimer, to ensure UltraTimer’s queue

18

is emptied at some point during the quiet period, which is more than 200 ms long. 200 ms is
longer than the delay between two received pings within a set of four pings should be, so this
reset only happens during the reset period before the master transmitter sends out its next
ping. Since the UltraCounter is a UDB Counter component, it counts edges of its ”count”
input, and must be operating at a higher speed clock. To convert the terminal count signal
pulse from the faster clock domain to the 1 MHz clock domain used by the timer, a pulse
converter component is used.

When UltraTimer sees four positive edges on the filtered received signal and captures
those four times, it triggers an interupt handler that reads those captured values and converts
the time differences into differences in distances in feet. Before doing so, some sanity checks
on the captured values are performed. First, since a timer reset should occur every cycle of
four pings, we know something is wrong if the captured timer value indicates it has been
a long time since the last reset of the timer. If any captured timer value indicates it was
captured more than a second since the previous measurement, something has gone wrong and
we throw out the entire measurement. Furthermore, we throw away the entire measurement
if any of the differences in distances are much larger than the dimensions of the rectangle
of transmitters. Only if the measurements make it through these sanity checks do we carry
out the positioning math described in section 2.2.2.

5 Testing and debugging scaffolds

Before we were doing integration testing of our positioning system, we developed various
testing tools to test one part of the system by simulating inputs as if from the rest of the
system. Here we will briefly discuss a few such test setups.

First, to test ultrasonic reception and the basic ability to time the difference between
two pings, we had tx˙test˙2. In this test, one Arduino Uno controls two transmitters, and
alternately sends out pings from them. We put the transmitters on the ends of long twisted
wire pairs, so that we could move them close and further away, and see whether we could
measure the time difference between when the pings are received changed. Different receiver
circuits could then be tested. The code for this test is included in appendix section C.1.

To test the positioning math given relatively clean reception, we had rx˙test, whose code
is included in appendix section C.3. Here, the Arduino sends out a series of four square
pulses spaced unevenly, looking a lot like the blue waveform in Figure 8. A wire would be
connected from the Arduino output pin directly to the PSoC, and the Arduino is essentially
pretending to be the receiver circuitry, so that there were no actual ultrasonic components
involved in this test setup. We could calculate what the timings of the received pulses should
be at arbitrarily chosen locations, program the Arduino to send pulses with those timings,
and then check whether the PSoC was correctly calculating the position we chose.

Finally, we had a version of rx˙test that actually uses ultrasonics, named tx˙test˙4. The
code for tx˙test˙4, given in appendix section C.2, would run on an Arduino connected to a
single transmitter. The Arduino would send out a series of four pings with certain timings.
The actual ultrasonic receiver circuit would be plugged in to the PSoC, and we would see

19

whether the PSoC was correctly calculating the position those timings should indicate. Since
all the pings are being sent out a single transmitter, they all experience the same time of flight
to the receiver, so the time of flight does not introduce any differences to the relative timings
of the received pings. This could be tested with the transmitter on the other side of the
room, and essentially the one transmitter is pretending to be four synchronized transmitters
at different locations.

We did do some initial testing of radio communication by hooking Arduinos with XBees
to separate laptops and communicating accross the room. The XBees always just seemed to
work, and are rated to have a range of at least a few hundred feet, which is more than the
length of the room. Having seen this, testing of the synchronization of transmitter stations
was done simply by bringing all the transmitter stations to a single lab bench and using an
oscilloscope to look at the relative timing of the pings they emitted. This did not require
any special code. As practically none of the latency we are concerned with arises from
the time for propagation of radio signals, we assumed that if the transmitters can correctly
synchronize when they are within a few feet of each other, as assume they can still more or
less correctly synchronize when they are spread around the room. The fact that positioning
worked fairly well when we had the whole system running indicates this assumption was
good enough.

6 Performance and sources of bad data

When the car is sitting stationary and has a clear line of sight to all four transmitter stations,
the positions it will calculate from repeated measurements will generally vary by a few inches,
and a new measurement occurs after each round of pings, which happens once every two
thirds of a second or so. However, there are several ways the positioning system can be foiled
and produce poor results.

If something is blocking the direct line of sight between the car and a transmitter station,
generally the ultrasonic ping from the transmitter station will still reach the car, because
ultrasound has no trouble traveling around obstacles. However, this will delay the first rising
edge at the receiver for this ping, leading the car to believe it is further from that transmitter
station and ruining the positioning calculation.

Sharp noises with appreciable high-frequency content, especially loud clapping, are read-
ily observed to cause the ultrasonic transducers at the receivers to ring briefly as if receiving
an ultrasonic ping. This does not appear to be a problem in our receiver circuitry, but rather
has to do with the resonance of the physical transducer itself. Usually, such extra pings will
fail the sanity checks or the final error metric check, and the whole measurement will be
thrown out, so the problem is not that this introduces error into positioning calculations,
but that it delays the next new position information. In our testing, one person clapping
continuously a couple yards away from the receiver could indefinitely prevent the car from
getting a position fix.

If the car is moving, because the signals from the four transmitter stations are received at
different points in time, they will also be received when the car receiver is at different points

20

in space. All of our positioning calculations described in Section 2 assume all measurements
pertain to a single unknown location of the receiver, (x, y, 0). When the car is moving, this
assumption is false, and as shown in Figure 11, this can lead to errors that are much larger
than when stationary. Intuitively, one might expect errors on the same order as the distance
the car travels during a round of pings, which last a few hundred milliseconds. Thus, if the
car is traveling a a couple feet per second, one can expect errors on the order of a foot or
more.

7 Applications

Having built a indoor ultrasonic positioning system, we set out to demonstrate its capabili-
ties.

7.1 Navigation

One application of our positioning system would be to create an autonomous navigation
system, whereby a car could travel to defined waypoints, either making stops at desired
locations or tracing out a desired path. With radio communication, cars could interact and
travel routes around each other, avoiding collisions, or following a path previously traveled
by another car.

7.1.1 H-Bridge

Figure 9: The board of the H-bridge circuit.

To enable the car to navigate robustly around the room, the ability to drive the car in
reverse would be helpful, so we added an H-bridge circuit (as seen in Figure 9) to our motor
control. The H-bridge makes it possible for the PSoC to run the motor in both directions.

21

Figure 10: Schematic of the H-bridge circuit..

The gate of each transistor corresponds to a control signal from the PSoC. Inputs A and
B controlling the NMOS’s can come directly from the PSoC. Because the PMOS transistors
had to deliver 7.2V to the motor and the PSoC only outputs a maximum of 5V, we need to
put some hardware between the PSoC output and the gate of the PMOS’s to raise the signal
voltage to 7.2V. For one car, we chose the LM311P comparator IC to output 7.2V when the
PSoC signal is above a reasonable threshold of 3.6V and output 0V when the PSoC signal
is under 3.6V. For the other car, we simply ran the PSoC output to simple single-transistor
inverters, constructed out of a general-purpose 2N7000 n-type pull down transistor and a 1
kΩ pull-up resistor.

With such an H-bridge circuit, driving forward can be done by, for example, turning on
the PMOS controlled by A’ and sending a PWM signal to A. Backwards driving can be done
by turning the PMOS controlled by B’ and sending a PWM signal to B. Rheostatic braking
can also be acheived, for example by simultaneously turning on both NMOS’s while leaving
the PMOS’s off. In the software that controls all this, we ensure any time we’re switching
between any of these three modes, (forwards, backwards, and braking), all the transistors
are first turned off for a millisecond, to guarantee there is no time at which a short circuit
path exists. This can be seen in appendix section A.4.

7.1.2 General autonomous navigation

Unfortunately, figuring out how to get the car to navigate to an arbitrary (x, y) position
using only the positioning system proved more difficult than initially expected. If we knew
the orientation of the car, getting to an arbitrary position seems fairly straightforward. At
any given time, take the desired orientation to be the direction between the position of the
car and the desired position. If the difference between the current orientation and desired
orientation is small, we could simply perform PID or any other form of feedback control to
point the car towards the desired destination. If the difference is large, we could code special

22

turning maneuvers for the car to rotate itself around.
Unfortunately, the only way we had to figure out the orientation of the car in general is to

make some movement larger than the effective spatial resolution of our positioning system,
and look at the change in position. After identifying an initial orientation, in principle one
could keep updating an estimate of orientation by a combination of odometry and continuing
to look at the direction in which the most recent positions have moved. Unfortunately, we
started investigating this relatively late, and ran out of time before coming up with a working
solution. The noise in our positioning is such that merely taking our orientation to be the
direction of the change between the two most recent positions is far too noisy. In general,
it seems estimating orientation based on a fixed-length history of recent positions might
work well for some speeds, but would do poorly if the speed of the car varied, and a special
approach would have to be taken when the car comes to a stop. It seems possible in principle
to come up with a good algorithm to look at a dynamically adjusting number of previous
points and determining the recent trend in change direction, but we have not found this
algorithm. As for odometry, we have the Hall effect sensor to tell us about our speed, and
we always know something about the current steering angle as we have control over that.
Unfortunately, it seems that steering is sufficiently nonlinear and/or the Hall effect sensor
doesn’t provide enough resolution that orientation could be tracked accurately through turns.
Using inertial sensing (i.e., a gyroscope) would probably help a lot.

7.1.3 Simpler navigation demonstration

Of course, to demonstrate the ability to use the positioning system to navigate, it is not
truly necessary to have the car autonomously navigate itself to an arbitrary (x, y) position
from any arbitrary position and orientation. It is quite easy to start the car in a known
orientation in a known area, and have it move forward or backward until it sees its x- or
y-coordinate reach a certain threshold, before it takes some other action, such as changing
direction. Having the car oscillate between certain y-coordinates, or stop and go at certain
locations, turns out to be quite simple.

7.2 Mapping

For the mapping application of our positioning system, we again decided to use the XBee
radio modules to communicate between the PSoC board on the car and our computer. The
goal was to have the positioning information collected by the car sent to the computer so
that it could be plotted in real time. To accomplish this goal, we used an XBee module on
the car with a shield similar to those used for the Arduino transmitters to connect to the
PSoC and a XBIB-U-DEV board to connect the XBee module to the computer via USB.
These XBees were configured such that they were using a different channel to communicate
than the XBees used in the transmitter stations to avoid possible interference that could
derail both systems of communication.

On the car side, all communication was coordinated by the PSoC through the provided
UART module. Using this module, we can set TX and RX pins to send and receive informa-

23

tion via the XBee connected to those designated pins. Whenever data is generated from the
receiver, it is written to the UART module and sent over the XBee to the XBee attached to
the computer. The position string sent to the computer is always the same: ‘X’ then current
x-coordinate, then ‘Y’ then current y-coordinate. An example string, if the car were located
at (2.41, -5.34), would be “X2.41Y-5.34”.

Figure 11: A partial map plotted in Matlab using coordinates received from the
car as it drove around the racetrack. At about (−5, 0) you can see where the car
veered off the track, and was manually returned to the track, before it continued
along the track. On the other side of the curve, at around (−7, 7), there is one
noticeable bad data point, which appeared to be caused by a human blocking line
of sight between the car and one of the transmitter stations.

On the computer side, we used Matlab to communicate via serial with the XBee due to
its relatively simple serial port I/O commands and ability to easily turn points received into
a plot. To create a real-time connection between the car, we first connect to the correct
COM port and open it using the correct Baud Rate. Then we set up the plot according to
the parameters of our grid such that the plot will be to the same scale of the room. We used

24

the animatedline object in Matlab to integrate new information into the plot as we received
it from the car. The animatedline is very efficient for this application as it does not require
the user to store each individual point in an array and update it each time a new point is
received. Instead, the animatedline object has an addPoint() function that allows the user
to add new points to the line that are then stored in the object dynamically, requiring only
a refresh of the plot and no vector separately storing points. Then, as each string containing
the data points is received via the attached XBee, we can parse the string according to the
known formatting and extract the x and y coordinates and feed them into the animatedline
for a dynamic plot of real-time position. The Matlab script used to generate these plots can
be found in Appendix D.

Just as the Arduino code for the transmitters required timeouts and other checks to ensure
a robust system, due to occasional data loss, this system also needs similar checks to be sure
that it does not quit or produce undesirable results when it receives corrupted data. Thus,
we have implemented various checks on the input, such as whether the string contains all four
elements in the correct order (character, float, character, float), whether the string contains
any information, and a timeout to determine if the connection to the car has been lost. Using
the fgetl() function, we can take one line of input at a time to process, since we look for a
newline character to terminate each string sent from the car. However, one problem that
arose with this strategy was that sometime either in the transmission or receiving process,
extra characters could be appended onto the front of the string that were either random or
whitespace, throwing off our parsing. To avoid these characters being included in the parsing
process, we do an initial paring of the string down to just the necessary information before
the string format check; specifically, we iterate through the string until the ‘X’ character is
found, signifying the beginning of the relevant coordinate string. With these error checks,
the script runs smoothly, plotting the points received effectively and exiting gracefully by
closing the serial port if an error occurs.

25

A C code compiled in PSoC Creator for car

Cypress’s APIs use capitalized letters at the start of words. Therefore, whenever we define
our own functions, we use only lowercase letters, which helps distinguish functions we write
from the provided APIs, and reduces the chance of a name collision.

A.1 main.c

1 /* ==

2 * main.c

3 * Victor A. Ying and Monica Lu

4 *

5 * This is the main program. It contains very little code.

6 * ==

7 */

8

9 #include <project.h>

10 #include <stdio.h>

11

12 #include "usb_uart.h"

13 #include "shell.h"

14 #include "drive.h"

15 #include "speed.h"

16 #include "steer.h"

17 #include "position.h"

18

19 /*

20 * MAIN PROGRAM

21 */

22 int main(void) {

23 // Turn on interrupts

24 CyGlobalIntEnable;

25

26 // Initialize USB serial connection for I/O

27 // usb_uart_init(USBUART_5V_OPERATION); //!!NOTE!! Make sure this matches your

board voltage!

28

29 // Initialize LCD display

30 LCD_Start();

31

32 // Initialize radio communincation

33 UART_Start();

34

35 // Begin positioning

26

36 position_init();

37

38 // Initialize navigation stuff

39 drive_init();

40

41 // Main loop performs user interface/communication actions.

42 // Other actions are performed in interrupt handlers.

43 for (;;) {

44 // shell_handle_received_chars();

45 // speed_display_info();

46

47 // Display position to LCD

48 if (position_data_available()) {

49 char buf[32], radiobuf[32];

50 float x, y;

51 uint16 counter = 0u;

52 uint8 status = CyEnterCriticalSection();

53 x = position_x();

54 y = position_y();

55 sprintf(radiobuf, "X%.2fY%.2f\n", x, y);

56 UART_PutString(radiobuf);

57 /*

58 LCD_Position(0,0);

59 LCD_PrintNumber(counter++);

60 sprintf(buf, "Error:%.2f ", error());

61 LCD_Position(0,4);

62 LCD_PrintString(buf);

63 sprintf(buf, "X:%.2f Y:%.2f ", x, y);

64 LCD_Position(1,0);

65 LCD_PrintString(buf);

66 */

67 CyExitCriticalSection(status);

68 }

69 }

70 }

71

72 /* [] END OF FILE */

27

A.2 position.c

1 /* ===

2 *

3 * position.c

4 * Michael Danielczuk, Andrew Kim, Monica Lu, and Victor Ying

5 *

6 * Provides positioning using time difference of arrival

7 * multilateration with four transmitters arranged in a

8 * rectangle. Assumes the transmitters send out pings in turn

9 * with a certain amount of spacing time between when pings are

10 * sent, and that these pings are sent in a counterclockwise

11 * order.

12 *

13 * ===

14 */

15

16 #include <project.h>

17 #include <math.h>

18 #include <limits.h>

19 #include <stdio.h>

20

21 #include "position.h"

22

23

24 /*

25 * CONSTANTS

26 */

27

28 #define X 23.5 // distance between first and second transmitters in feet

29 #define Y 33.75 // distance between second and third transmitters in feet

30 #define Z 7.583

31 #define CLOCK_FREQ 1000000 // Hz

32 #define WAVE_SPEED 1135.0 // ft/s

33 #define TX_SPACING 100 // ms

34 #define EPSILON 0.5 // ft

35 #define DEL_FACTOR 0.1 // ft

36 #define MAX_ERROR 0.5 // ft^2

37 #define ERROR_THRESHOLD 0.01 // ft^2

38 #define MAX_ITERATIONS 100

39

40 //#define SHOW_GARBAGE // Uncomment this to check if sanity checks are failing

41 #define PRINT_CONVERGENCE // Comment this out to make positioning silent

42

43 /*

28

44 * STATIC FUNCTION PROTOTYPES

45 */

46

47 static CY_ISR_PROTO(positioningHandler) ;

48

49

50 /*

51 * GLOBAL VARIABLES

52 */

53

54 static float x = 0.0, y = 0.0; // the current position

55 static float fxy = 0.0; // the current error

56 static uint8 new_data = 0u; // Boolean indicating whether new data available

57

58

59 /*

60 * FUNCTIONS

61 */

62

63 /*

64 * position_init:

65 * Start positioning.

66 */

67 void position_init(void) {

68 UltraCounter_Start();

69 GlitchCounter_Start();

70 UltraTimer_Start();

71 UltraComp_Start();

72 UltraDAC_Start();

73 UltraIRQ_Start();

74 UltraIRQ_SetVector(positioningHandler);

75 }

76

77 /*

78 * position_data_available:

79 * returns nonzero if new data since the last time this function was called.

80 */

81 uint8 position_data_available(void) {

82 uint8 status = CyEnterCriticalSection();

83 uint8 ret = new_data;

84 new_data = 0u;

85 CyExitCriticalSection(status);

86 return ret;

87 }

88

29

89 /*

90 * position_?:

91 * Getter functions for position in units of feet, with the origin at the

92 * center of the rectangle formed by the transmitters.

93 */

94 float position_x(void) {

95 return x;

96 }

97 float position_y(void) {

98 return y;

99 }

100

101 float error(void) {

102 return fxy;

103 }

104

105 float fabsf(float num) {

106 if (num >= 0.0)

107 return num;

108 else

109 return -num;

110 }

111

112 /*

113 * positioningHandler:

114 * Interrupt handler run after sequence of four pings, calculating position.

115 */

116 static CY_ISR(positioningHandler) {

117 uint32 time[4];

118 float diff[4];

119 int i, iters;

120 float new_x, new_y, new_fxy;

121

122 // Get the times of arrival

123 for (i = 0; i < 4; i++) {

124 time[i] = UltraTimer_ReadCapture();

125

126 // If more than a second since the last reset, then throw away this

127 // set of measurements

128 if (time[i] == 0u || time[i] < ULONG_MAX - CLOCK_FREQ) {

129 #ifdef SHOW_GARBAGE

130 x = (float)i;

131 y = (float)time[i];

132 new_data = 1u;

133 #endif

30

134 return;

135 }

136 }

137

138 // Calculate differences in distances in feet

139 for (i = 1; i < 4; i++) {

140 diff[i] = (float)((int32)(time[0] - time[i])

141 - i*(CLOCK_FREQ/1000*TX_SPACING))

142 * (WAVE_SPEED/CLOCK_FREQ);

143

144 // If difference is much larger than the size of the rectangle of

145 // transmitter stations, the data is probably bad, so throw it away

146 if (fabsf(diff[i]) > X + Y) {

147

148 #ifdef SHOW_GARBAGE

149 x = (float)i;

150 y = diff[i];

151 new_data = 1u;

152 #endif

153 return;

154 }

155 }

156

157 // Positioning using Newton’s method

158 new_x = x;

159 new_y = y;

160 iters = 0;

161 do {

162 float dfx, dfy, gradient_magnitude_squared;

163 float dist[4], error[4];

164 char buf[32];

165 uint8 status;

166

167 // Calculate what the distances should be based on our most recent (x,y)

168 dist[0] = sqrt((new_x+X/2)*(new_x+X/2) + (new_y+Y/2)*(new_y+Y/2) + Z*Z);

169 dist[1] = sqrt((new_x-X/2)*(new_x-X/2) + (new_y+Y/2)*(new_y+Y/2) + Z*Z);

170 dist[2] = sqrt((new_x-X/2)*(new_x-X/2) + (new_y-Y/2)*(new_y-Y/2) + Z*Z);

171 dist[3] = sqrt((new_x+X/2)*(new_x+X/2) + (new_y-Y/2)*(new_y-Y/2) + Z*Z);

172

173 // Calculate disagreement between hypothetical distances and measurements

174 for (i = 1; i < 4; i++)

175 error[i] = (dist[i]-dist[0]) - diff[i];

176

177 // Calculate our metric as the sum of the squares of the errors

178 new_fxy = 0.0;

31

179 for (i = 1; i < 4; i++)

180 new_fxy += error[i]*error[i];

181

182 // Calculate the partial derivatives of the metric

183 dfx = 2*error[2] * (((new_x - X/2)/dist[2]) - (new_x + X/2)/dist[0]);

184 dfx += 2*error[3] * (((new_x + X/2)/dist[3]) - (new_x + X/2)/dist[0]);

185 dfx += 2*error[1] * (((new_x - X/2)/dist[1]) - (new_x + X/2)/dist[0]);

186

187 dfy = 2*error[2] * (((new_y - Y/2)/dist[2]) - (new_y + Y/2)/dist[0]);

188 dfy += 2*error[3] * (((new_y - Y/2)/dist[3]) - (new_y + Y/2)/dist[0]);

189 dfy += 2*error[1] * (((new_y + Y/2)/dist[1]) - (new_y + Y/2)/dist[0]);

190

191 // Quit now if we’re already at a stationary point

192 gradient_magnitude_squared = dfx*dfx + dfy*dfy;

193 if (gradient_magnitude_squared == 0.0)

194 break;

195

196 // Otherwise, update according to a version of Newton’s method

197 new_x -= DEL_FACTOR * new_fxy * dfx / gradient_magnitude_squared;

198 new_y -= DEL_FACTOR * new_fxy * dfy / gradient_magnitude_squared;

199

200 #ifdef PRINT_CONVERGENCE

201 // Show convergence happening on the LCD

202 status = CyEnterCriticalSection();

203 sprintf(buf, "dX:%.1f dY:%.1f %d ", dfx, dfy, iters);

204 LCD_Position(1,0);

205 LCD_PrintString(buf);

206 sprintf(buf, "X:%.1f Y:%.1f ", new_x, new_y);

207 LCD_Position(0,0);

208 LCD_PrintString(buf);

209 sprintf(buf, " %.1f ", new_fxy);

210 LCD_Position(0,13);

211 LCD_PrintString(buf);

212 CyExitCriticalSection(status);

213 #endif

214

215 iters++;

216 } while ((fabsf(new_fxy) > ERROR_THRESHOLD) && (iters < MAX_ITERATIONS));

217

218 if (fabsf(new_fxy) < MAX_ERROR) {

219 x = new_x;

220 y = new_y;

221 fxy = new_fxy;

222 new_data = 1u;

223 }

32

224

225 // Clear interrupt

226 UltraTimer_ReadStatusRegister();

227 }

228

229

230 /* [] END OF FILE */

position.h

1 /* ===

2 *

3 * position.h

4 * Michael Danielczuk, Andrew Kim, Monica Lu, and Victor Ying

5 *

6 * Provides positioning using time difference of arrival

7 * multilateration with four transmitters arranged in a

8 * rectangle.

9 *

10 * ===

11 */

12

13 #ifndef POSITION_H

14 #define POSITION_H

15

16 #include <project.h>

17

18 /*

19 * position_init:

20 * Start positioning.

21 */

22 void position_init(void) ;

23

24 /*

25 * position_data_available:

26 * returns nonzero if new data since the last time this function was called.

27 */

28 uint8 position_data_available(void) ;

29

30 /*

31 * position_?:

32 * Getter functions for position in units of feet, with the origin at the

33 * center of the rectangle formed by the transmitters.

34 */

33

35 float position_x(void) ;

36 float position_y(void) ;

37

38 /*

39 * error:

40 * Getter function for error in units of feet squared.

41 */

42 float error(void) ;

43

44 #endif

45

46 /* [] END OF FILE */

34

A.3 drive.c

1 /* ==

2 * drive.c

3 * Monica Lu and Victor Ying

4 *

5 * High-level movement program.

6 * ==

7 */

8

9 #include <project.h>

10

11 #include "drive.h"

12 #include "speed.h"

13 #include "steer.h"

14

15

16 /*

17 * drive_init:

18 * Begins driving the car.

19 */

20 void drive_init(void) {

21 steer_init();

22 speed_init();

23

24 steer_pid_start();

25 speed_forward();

26 speed_pid_start("0.5");

27 }

28

29 /*

30 * magnet_callback:

31 * Called on every hall sensor tick with a running total distance traveled.

32 */

33 void magnet_callback(void) {

34 // Do about half a lap

35 if (distance_traveled >= 50.0)

36 speed_brake();

37

38 /*

39 // Do two laps and maximum speed

40 if (distance_traveled < 1.0)

41 ;

42 else if ((distance_traveled > 3.0 && distance_traveled < 20.0) ||

43 (distance_traveled > 100.0 && distance_traveled < 118.0))

35

44 speed_set(9.0);

45 else if (distance_traveled < 194.0)

46 speed_set(5.7);

47 else

48 speed_brake(); */

49 }

50

51

52 //[] END OF FILE

drive.h

1 /* ==

2 * drive.h

3 * Monica Lu and Victor Ying

4 *

5 * High-level movement program.

6 * ==

7 */

8

9 #ifndef DRIVE_H

10 #define DRIVE_H

11

12

13 /*

14 * drive_init:

15 * Begins driving the car.

16 */

17 void drive_init(void) ;

18

19 /*

20 * magnet_callback:

21 * Called on every hall sensor tick with a running total distance traveled.

22 */

23 void magnet_callback(void) ;

24

25 #endif

26

27 //[] END OF FILE

36

A.4 speed.c

1 /* ==

2 * speed.c

3 * Monica Lu and Victor Ying

4 *

5 * Speed measurement and control.

6 * ==

7 */

8

9 #include <project.h>

10 #include <stdio.h>

11 #include <stdlib.h>

12 #include <limits.h>

13

14 #include "speed.h"

15 #include "steer.h"

16 #include "drive.h"

17 #include "usb_uart.h"

18

19 #define DISTANCE_PER_TICK 0.1285 // in feet

20 #define DERIV_CONTROL_AVERAGING 3

21 #define TIMER_COUNTS_PER_SECOND 1000000.0 // timers are fed by 1 MHz clock

22 #define PID_INTERVALS_PER_SECOND 100.0 // PID control is reevaluated every 10 ms

23

24 enum state {

25 COAST = 0u,

26 FORWARD = 1u,

27 BACKWARD = 2u,

28 BRAKE = 3u,

29 };

30

31 // Because the speed sensor is on the right side of the car, it underestimates

32 // speed during right turns and overestimates during left turns. This is for a

33 // compensating correction term.

34 #define SPEED_ADJUSTMENT_COEFFICIENT (-0.12)

35

36

37 static CY_ISR_PROTO(hall_handler) ;

38 static CY_ISR_PROTO(speed_pid_handler) ;

39 static void speed_pid_control(void) ;

40

41 static enum state current_state;

42

43 float speed = 0.0;

37

44 float distance_traveled = 0.0;

45 float power_output = 0.0;

46

47 static uint16 count_since_magnet = 0u;

48 static uint8 speed_pid_enabled = 0u; // Boolean value indicating whether or not

to do PID speed control.

49 static float speed_setpoint = 0.0; // in feet per second

50 static float kp = 0.1; // in normalized control output adjustment per (feet per

second) error.

51 static float ki = 0.2; // in normalized control output adjustment per (feet per

second) error per second.

52 static float kd = 0.0; // in normalized control output adjustment per (change in

feet per second per second).

53

54

55 static void set_state(enum state desired) {

56 current_state = desired;

57 Drive_Control_Reg_Wakeup();

58 Drive_Control_Reg_Write(desired);

59 }

60

61

62 /*

63 * speed_init:

64 * Initializes timers, pwm, etc. for controlling speed. Initializes

65 * to coasting state.

66 */

67 void speed_init(void) {

68 uint8 status = CyEnterCriticalSection();

69

70 speed_coast();

71

72 Hall_Timer_Start();

73 Hall_IRQ_Start();

74 Hall_IRQ_SetVector(hall_handler);

75

76 Speed_PID_Timer_Start();

77 Speed_PID_IRQ_Start();

78 Speed_PID_IRQ_SetVector(speed_pid_handler);

79

80 Drive_PWM_Start();

81

82 CyExitCriticalSection(status);

83 }

84

38

85 /*

86 * speed_display_info:

87 * Print current speed and normalized controller output to the LCD.

88 */

89 void speed_display_info(void) {

90 char strbuf[17];

91

92 uint8 status = CyEnterCriticalSection();

93

94 // Print out info

95 sprintf(strbuf, "Speed: %.6f", speed);

96 LCD_Position(0,0);

97 LCD_PrintString(strbuf);

98 if (speed_pid_enabled) {

99 sprintf(strbuf, "Control:%.6f", power_output);

100 LCD_Position(1,0);

101 LCD_PrintString(strbuf);

102 }

103

104 CyExitCriticalSection(status);

105

106 CyDelay(50u);

107 }

108

109 /*

110 * speed_pid_start:

111 * Sets the speed to the floating point value represented by desired_speed,

112 * and enables PID speed control

113 */

114 void speed_pid_start(const char* desired_speed) {

115 uint8 status = CyEnterCriticalSection();

116

117 if (*desired_speed != ’\0’)

118 speed_setpoint = atof(desired_speed);

119 speed_pid_enabled = 1;

120

121 CyExitCriticalSection(status);

122 }

123

124 /*

125 * speed_set:

126 * Sets the speed_setpoint.

127 */

128 void speed_set(float desired) {

129 uint8 status = CyEnterCriticalSection();

39

130

131 speed_setpoint = desired;

132

133 CyExitCriticalSection(status);

134 }

135

136 /*

137 * speed_coast:

138 * Disables PID speed control, and sets main drive motor PWM compare value

139 * to 0, and sets state to coasting.

140 */

141 void speed_coast(void) {

142 uint8 status = CyEnterCriticalSection();

143

144 speed_pid_enabled = 0;

145 Drive_PWM_WriteCompare(0);

146 set_state(COAST);

147

148 CyExitCriticalSection(status);

149 }

150

151 /*

152 * speed_brake:

153 * Disables PID speed control, and sets main drive motor PWM compare value

154 * to 0, and sets state to braking.

155 */

156 void speed_brake(void) {

157 uint8 status = CyEnterCriticalSection();

158

159 speed_pid_enabled = 0;

160 Drive_PWM_WriteCompare(0);

161 if (current_state == FORWARD || current_state == BACKWARD) {

162 set_state(COAST);

163 CyDelay(1);

164 }

165 set_state(BRAKE);

166

167 CyExitCriticalSection(status);

168 }

169

170 /*

171 * speed_forward:

172 * Changes the state to forward motion.

173 */

174 void speed_forward(void) {

40

175 uint8 status = CyEnterCriticalSection();

176

177 if (current_state == BRAKE || current_state == BACKWARD) {

178 set_state(COAST);

179 CyDelay(1);

180 }

181 set_state(FORWARD);

182

183 CyExitCriticalSection(status);

184 }

185

186 /*

187 * speed_backward:

188 * Changes the state to forward motion.

189 */

190 void speed_backward(void) {

191 uint8 status = CyEnterCriticalSection();

192

193 if (current_state == BRAKE || current_state == FORWARD) {

194 set_state(COAST);

195 CyDelay(1);

196 }

197 set_state(BACKWARD);

198

199 CyExitCriticalSection(status);

200 }

201

202 /*

203 * speed_set_power:

204 * Sets the main drive motor PWM compare value.

205 */

206 void speed_set_power(const char *valstr) {

207 uint8 status = CyEnterCriticalSection();

208

209 if (speed_pid_enabled) {

210 usb_uart_putline(

211 "Cannot manually set power while PID control is running!");

212 }

213 else {

214 uint16 cmp;

215

216 power_output = atof(valstr);

217 if (power_output > 1.0)

218 power_output = 1.0;

219 else if (power_output < 0.0)

41

220 power_output = 0.0;

221 cmp = (uint16)(power_output * USHRT_MAX);

222 Drive_PWM_WriteCompare(cmp);

223 }

224

225 CyExitCriticalSection(status);

226 }

227

228 /*

229 * speed_set_k*:

230 * Set PID control constants.

231 */

232 void speed_set_kp(const char *val) {

233 uint8 status = CyEnterCriticalSection();

234 kp = atof(val);

235 CyExitCriticalSection(status);

236 }

237 void speed_set_ki(const char *val) {

238 uint8 status = CyEnterCriticalSection();

239 ki = atof(val);

240 CyExitCriticalSection(status);

241 }

242 void speed_set_kd(const char *val) {

243 uint8 status = CyEnterCriticalSection();

244 kd = atof(val);

245 CyExitCriticalSection(status);

246 }

247

248

249 /*

250 * hall_handler:

251 * Should run every time a magnet is seen.

252 * Recalculates the current speed estimate.

253 */

254 static CY_ISR(hall_handler) {

255 static uint32 prev;

256 uint32 val = Hall_Timer_ReadCapture();

257 uint32 diff = prev - val;

258 float time;

259 uint8 status;

260

261 prev = val;

262

263 time = (float)diff / TIMER_COUNTS_PER_SECOND;

264 speed = DISTANCE_PER_TICK / time; // in units of feet/second

42

265 speed /= 1.0 + steer_output * SPEED_ADJUSTMENT_COEFFICIENT;

266

267 count_since_magnet = 0;

268

269 distance_traveled += DISTANCE_PER_TICK /

270 (1.0 + steer_output * SPEED_ADJUSTMENT_COEFFICIENT);

271

272 status = CyEnterCriticalSection();

273 magnet_callback();

274 CyExitCriticalSection(status);

275

276 // Clear interrupt

277 Hall_Timer_ReadStatusRegister();

278 }

279

280 /*

281 * speed_pid_handler:

282 * Should run once every 10 ms interval. Does speed control.

283 */

284 static CY_ISR(speed_pid_handler) {

285 uint8 saved_interrupt_status;

286

287 // If a magnet is not seen for a long time, decrease the speed estimate

288 if (count_since_magnet > 0) {

289 float time_since_magnet = count_since_magnet / PID_INTERVALS_PER_SECOND;

290 float speed_estimate = DISTANCE_PER_TICK / time_since_magnet;

291 speed_estimate /= 1.0 + steer_output * SPEED_ADJUSTMENT_COEFFICIENT;

292 if (speed_estimate < speed)

293 speed = speed_estimate;

294 }

295 count_since_magnet++;

296

297 saved_interrupt_status = CyEnterCriticalSection();

298 if (speed_pid_enabled &&

299 (current_state == FORWARD || current_state == BACKWARD))

300 speed_pid_control();

301 CyExitCriticalSection(saved_interrupt_status);

302 }

303

304 static void speed_pid_control(void) {

305 float error, deriv, next_riemann_sum,

306 prop_control, integ_control, deriv_control;

307 static float riemann_sum = 0.0;

308 static float prev_errors[DERIV_CONTROL_AVERAGING];

309 static uint8 prev_errors_index = 0;

43

310 float change;

311 uint16 pwm_cmp;

312 uint8 status;

313

314 // Begin control calculations

315 error = speed_setpoint - speed;

316

317 // Proportional control

318 prop_control = kp * error;

319

320 // Integral control

321 next_riemann_sum = riemann_sum + error / PID_INTERVALS_PER_SECOND;

322 integ_control = ki * next_riemann_sum;

323

324 // Derivative control

325 change = error - prev_errors[prev_errors_index];

326 deriv = change * PID_INTERVALS_PER_SECOND / (float)DERIV_CONTROL_AVERAGING;

327 prev_errors[prev_errors_index] = error;

328 prev_errors_index = (prev_errors_index + 1) % DERIV_CONTROL_AVERAGING;

329 deriv_control = kd * deriv;

330

331 // Add it all together, with limiting to valid duty cycle values

332 power_output = 0.15 + prop_control + integ_control + deriv_control;

333 if (power_output < 0.0) {

334 power_output = 0.0;

335 }

336 else if (power_output > 1.0) {

337 power_output = 1.0;

338 }

339 else {

340 // Anti-windup: only allow integrator to build up if not saturating

341 riemann_sum = next_riemann_sum;

342 }

343

344 // Scale control value to a PWM compare value

345 pwm_cmp = (uint16)(USHRT_MAX * power_output);

346 status = CyEnterCriticalSection();

347 Drive_PWM_WriteCompare(pwm_cmp);

348 CyExitCriticalSection(status);

349 }

350

351

352 //[] END OF FILE

44

speed.h

1 /* ==

2 * speed.h

3 * Monica Lu and Victor Ying

4 *

5 * Speed measurement and control.

6 * ==

7 */

8

9 #ifndef SPEED_H

10 #define SPEED_H

11

12

13 extern float speed;

14 extern float distance_traveled;

15 extern float power_output;

16

17

18 /*

19 * speed_init:

20 * Initializes timers, interrupts, pwm, etc. for speed control. Initializes

21 * to coasting state.

22 */

23 void speed_init(void) ;

24

25 /*

26 * speed_display_info:

27 * Print current speed and normalized controller output to the LCD.

28 */

29 void speed_display_info(void) ;

30

31 /*

32 * speed_pid_start:

33 * Sets the speed to the floating point value represented by desired_speed,

34 * and enables PID speed control

35 */

36 void speed_pid_start(const char* desired_speed) ;

37

38 /*

39 * speed_set:

40 * Sets the speed_setpoint.

41 */

42 void speed_set(float speed_setpoint) ;

43

45

44 /*

45 * speed_brake:

46 * Disables PID speed control, and sets main drive motor PWM compare value

47 * to 0, and sets state to braking.

48 */

49 void speed_brake(void) ;

50

51 /*

52 * speed_coast:

53 * Disables PID speed control, and sets main drive motor PWM compare value

54 * to 0, and sets state to coasting.

55 */

56 void speed_coast(void) ;

57

58 /*

59 * speed_forward:

60 * Changes the state to forward motion.

61 */

62 void speed_forward(void) ;

63

64 /*

65 * speed_backward:

66 * Changes the state to forward motion.

67 */

68 void speed_backward(void) ;

69

70 /*

71 * speed_set_power:

72 * Sets the main drive motor PWM compare value.

73 */

74 void speed_set_power(const char *cmpstr) ;

75

76 /*

77 * speed_set_k*:

78 * Set PID control constants.

79 */

80 void speed_set_kp(const char *val) ;

81 void speed_set_ki(const char *val) ;

82 void speed_set_kd(const char *val) ;

83

84

85 #endif

86

87 //[] END OF FILE

46

A.5 steer.c

1 /* ==

2 * steer.c

3 * Monica Lu and Victor Ying

4 *

5 * Line detection and steering control.

6 * ==

7 */

8

9 #include <project.h>

10 #include <stdio.h>

11 #include <stdlib.h>

12

13 #include "steer.h"

14 #include "usb_uart.h"

15

16

17 #define FASTEST_CLK_FREQ 48000000.0 // 48 MHz

18 #define EXPECTED_ROW_LEN (0.000045 * FASTEST_CLK_FREQ) // in clock cycles

19 #define ACCEPTABLE_ROW_MARGIN 0.2

20 #define MIN_ACCEPTABLE_ROW_LEN ((uint16)(EXPECTED_ROW_LEN * (1.0 -

ACCEPTABLE_ROW_MARGIN)))

21 #define MAX_ACCEPTABLE_ROW_LEN ((uint16)(EXPECTED_ROW_LEN * (1.0 +

ACCEPTABLE_ROW_MARGIN)))

22 #define PID_INTERVALS_PER_SECOND 60.0 // Camera is 30 fps interlaced

23 #define DERIV_CONTROL_AVERAGING 4

24 #define STEERING_CENTER 1500 // 1.5 ms pulse = steer straight ahead

25

26

27 static CY_ISR_PROTO(camera_handler) ;

28 static void steer_pid_control(void) ;

29

30

31 float steer_output = 0.0;

32

33 static float measurement = 0.0;

34 static uint8 steer_pid_enabled = 0; // Boolean value indicating whether or not

to do PID steering control.

35 static float kp = 0.75;

36 static float ki = 0.0;

37 static float kd = 0.03;

38

39

40 /*

47

41 * steer_init:

42 * Initializes timers, interrupts, pwm, etc. for steering the car.

43 */

44 void steer_init(void) {

45 steer_stop();

46

47 Camera_Comp_Start();

48 Camera_Counter_Start();

49 Camera_Timer_Start();

50 Camera_IRQ_Start();

51 Camera_IRQ_SetVector(camera_handler);

52

53 Steering_PWM_Start();

54 }

55

56 /*

57 * steer_display_info:

58 * Print current measurements and normalized controller output to the LCD.

59 */

60 void steer_display_info(void) {

61 char strbuf[17];

62

63 // Print out info

64 sprintf(strbuf, "Meas.: %f ", measurement);

65 LCD_Position(0,0);

66 LCD_PrintString(strbuf);

67 sprintf(strbuf, "Steer: %f ", steer_output);

68 LCD_Position(1,0);

69 LCD_PrintString(strbuf);

70 CyDelay(50u);

71 }

72

73 /*

74 * steer_pid_start:

75 * Enables PID steering control

76 */

77 void steer_pid_start(void) {

78 steer_pid_enabled = 1u;

79 }

80

81 /*

82 * steer_stop:

83 * Disables PID steering control.

84 */

85 void steer_stop(void) {

48

86 steer_pid_enabled = 0u;

87 }

88

89 /*

90 * steer_set:

91 * Sets the steering angle.

92 */

93 void steer_set(const char *valstr) {

94 uint8 status = CyEnterCriticalSection();

95

96 if (steer_pid_enabled) {

97 usb_uart_putline(

98 "Cannot manually set steering while PID control is running!");

99 }

100 else {

101 uint16 cmp;

102 steer_output = atof(valstr);

103 if (steer_output > 1.0)

104 steer_output = 1.0;

105 else if (steer_output < -1.0)

106 steer_output = -1.0;

107 cmp = (int16)(500.0 * steer_output) + STEERING_CENTER;

108 Steering_PWM_WriteCompare(cmp);

109 }

110

111 CyExitCriticalSection(status);

112 }

113

114 /*

115 * steer_set_k*:

116 * Set PID control constants.

117 */

118 void steer_set_kp(const char *val) {

119 kp = atof(val);

120 }

121 void steer_set_ki(const char *val) {

122 ki = atof(val);

123 }

124 void steer_set_kd(const char *val) {

125 kd = atof(val);

126 }

127

128 static CY_ISR(camera_handler) {

129 uint16 row_start_time = Camera_Timer_ReadCapture();

130 uint16 black_start_time = Camera_Timer_ReadCapture();

49

131 uint16 black_end_time = Camera_Timer_ReadCapture();

132 uint16 row_end_time = Camera_Timer_ReadCapture();

133 uint16 black_mid_time, row_mid_time;

134 uint8 saved_interrupt_status;

135

136 // Only update our measurement of where the black strip is if the row looks

137 // like a full row containing a single black strip. (This effectively tosses

138 // out data at intersections.)

139 uint16 row_length = row_start_time - row_end_time;

140 if (row_length >= MIN_ACCEPTABLE_ROW_LEN &&

141 row_length <= MAX_ACCEPTABLE_ROW_LEN) {

142 black_mid_time = black_end_time + (black_start_time - black_end_time)/2u;

143 row_mid_time = row_end_time + row_length/2u;

144

145 measurement = (float)(int16)(black_mid_time - row_mid_time) * 2 /

(float)row_length;

146 }

147

148 // Do PID steering control

149 saved_interrupt_status = CyEnterCriticalSection();

150 if (steer_pid_enabled)

151 steer_pid_control();

152 CyExitCriticalSection(saved_interrupt_status);

153

154 // Clear interrupt

155 Camera_Timer_ReadStatusRegister();

156 }

157

158 /*

159 * steer_pid_control:

160 * Should run once after every new video frame. Does steering control.

161 */

162 static void steer_pid_control(void) {

163 float error, deriv, next_riemann_sum,

164 prop_control, integ_control, deriv_control;

165 static float riemann_sum = 0.0;

166 static float prev_errors[DERIV_CONTROL_AVERAGING] = {0};

167 static uint8 prev_errors_index = 0;

168 float change;

169 uint16 pwm_cmp;

170 uint8 status;

171

172 // Begin control calculations

173 error = - measurement;

174

50

175 // Proportional control

176 prop_control = kp * error;

177

178 // Integral control

179 next_riemann_sum = riemann_sum + error/PID_INTERVALS_PER_SECOND;

180 integ_control = ki * next_riemann_sum;

181

182 // Derivative control

183 change = error - prev_errors[prev_errors_index];

184 deriv = change * PID_INTERVALS_PER_SECOND / (float)DERIV_CONTROL_AVERAGING;

185 prev_errors[prev_errors_index] = error;

186 prev_errors_index = (prev_errors_index + 1) % DERIV_CONTROL_AVERAGING;

187 deriv_control = kd * deriv;

188

189 // Add it all together, with limiting to valid duty cycle values

190 steer_output = prop_control + integ_control + deriv_control;

191 if (steer_output < -1.0) {

192 steer_output = -1.0;

193 }

194 else if (steer_output > 1.0) {

195 steer_output = 1.0;

196 }

197 else {

198 // Anti-windup: only allow integrator to build up if not saturating

199 riemann_sum = next_riemann_sum;

200 }

201

202 // Scale control value to a PWM compare value

203 pwm_cmp = (int16)(500.0 * steer_output) + STEERING_CENTER;

204 status = CyEnterCriticalSection();

205 Steering_PWM_WriteCompare(pwm_cmp);

206 CyExitCriticalSection(status);

207 }

208

209 //[] END OF FILE

steer.h

1 /* ==

2 * steer.h

3 * Monica Lu and Victor Ying

4 *

5 * Line detection and steering control.

6 * ==

51

7 */

8

9 #ifndef STEER_H

10 #define STEER_H

11

12

13 extern float steer_output; // Ranges from -1.0 to 1.0.

14

15

16 /*

17 * steer_init:

18 * Initializes timers, interrupts, pwm, etc. for steering the car.

19 */

20 void steer_init(void) ;

21

22 /*

23 * steer_display_info:

24 * Print current steering info to the LCD.

25 */

26 void steer_display_info(void) ;

27

28 /*

29 * steer_pid_start:

30 * Enables PID steering control

31 */

32 void steer_pid_start(void) ;

33

34 /*

35 * steer_stop:

36 * Disables PID steering control.

37 */

38 void steer_stop(void) ;

39

40 /*

41 * steer_set:

42 * Sets the steering angle.

43 */

44 void steer_set(const char *valstr) ;

45

46 /*

47 * steer_set_steer_k*:

48 * Set PID control constants.

49 */

50 void steer_set_kp(const char *val) ;

51 void steer_set_ki(const char *val) ;

52

52 void steer_set_kd(const char *val) ;

53

54

55 #endif

56

57 //[] END OF FILE

53

A.6 shell.c

1 /* ==

2 * shell.c

3 * Victor A. Ying and Monica Lu

4 *

5 * a very minimal shell.

6 * ==

7 */

8

9 #include <project.h>

10 #include <stdio.h>

11 #include <string.h>

12 #include <stdlib.h>

13

14 #include "speed.h"

15 #include "steer.h"

16 #include "usb_uart.h"

17 #include "drive.h"

18

19 /*

20 * vshell_do_command()

21 * A function for parsing and dispatching command lines.

22 * Must be passed a null-terminated string!

23 */

24 void shell_do_command(const char* line) CYREENTRANT {

25 char cmd[SHELL_MAX_COMMAND_LENGTH + 1];

26 uint8 i = 0u;

27

28 // Ignore leading whitespace

29 while (isspace(*line))

30 line++;

31

32 // Identify command as the longest prefix not containing a space.

33 while (*line != ’\0’ && !isspace(*line)) {

34 cmd[i] = *line;

35 i++;

36 line++;

37 }

38 cmd[i] = ’\0’;

39

40 // Throw away any whitespace between the command and the arguments

41 while (isspace(*line))

42 line++;

43

54

44 // Now we can execute the identified command

45

46 // Do nothing in case of empty command

47 if (strcmp(cmd, "") == 0)

48 ;

49

50 // Shell built-in commands

51 else if (strcmp(cmd, "repeat") == 0) {

52 char numloops[SHELL_MAX_COMMAND_LENGTH];

53 i = 0u;

54

55 while (*line != ’\0’ && !isspace(*line)) {

56 numloops[i] = *line;

57 i++;

58 line++;

59 }

60 numloops[i] = ’\0’;

61 while (isspace(*line))

62 line++;

63

64 for (i = 0; i < atoi(numloops); i++) {

65 shell_do_command(line);

66 }

67 }

68

69 // Other commands

70 else if (strcmp(cmd, "serial") ==0) {

71 usb_uart_print_info();

72 }

73 else if (strcmp(cmd, "lcd") == 0) {

74 LCD_ClearDisplay();

75 LCD_PrintString(line);

76 }

77 else if (strcmp(cmd, "pid") == 0) {

78 speed_pid_start(line);

79 }

80 else if (strcmp(cmd, "brake") == 0) {

81 speed_brake();

82 }

83 else if (strcmp(cmd, "coast") == 0) {

84 speed_coast();

85 }

86 else if (strcmp(cmd, "fw") == 0) {

87 speed_forward();

88 }

55

89 else if (strcmp(cmd, "bw") == 0) {

90 speed_backward();

91 }

92 else if (strcmp(cmd, "power") == 0) {

93 speed_set_power(line);

94 }

95 else if (strcmp(cmd, "speedkp") == 0) {

96 speed_set_kp(line);

97 }

98 else if (strcmp(cmd, "speedki") == 0) {

99 speed_set_ki(line);

100 }

101 else if (strcmp(cmd, "speedkd") == 0) {

102 speed_set_kd(line);

103 }

104 else if (strcmp(cmd, "steerpid") == 0) {

105 steer_pid_start();

106 }

107 else if (strcmp(cmd, "steerstop") == 0) {

108 steer_stop();

109 }

110 else if (strcmp(cmd, "steerset") == 0) {

111 steer_set(line);

112 }

113 else if (strcmp(cmd, "steerkp") == 0) {

114 steer_set_kp(line);

115 }

116 else if (strcmp(cmd, "steerki") == 0) {

117 steer_set_ki(line);

118 }

119 else if (strcmp(cmd, "steerkd") == 0) {

120 steer_set_kd(line);

121 }

122 // If command was not any of the above...

123 else {

124 char8 strbuf[128];

125

126 sprintf(strbuf, "Command \"%s\" not recognized", cmd);

127 usb_uart_putline(strbuf);

128 }

129 }

130

131 /*

132 * shell_handle_char()

133 * A function for handling keypresses from a

56

134 * terminal, and building up command lines.

135 */

136 void shell_handle_char(char c) {

137 static char linebuf[SHELL_MAX_COMMAND_LENGTH + 1];

138 static uint8 line_index = 0;

139

140 if (c < 127 && c >= 32) { // If the user pressed a character

141 #ifdef SHELL_LCD_DEBUG

142 // For debugging purposes, display the character to the LCD

143 LCD_ClearDisplay();

144 LCD_PutChar(c);

145 #endif

146

147 if (line_index < SHELL_MAX_COMMAND_LENGTH) {

148 // Add character to current line

149 linebuf[line_index] = c;

150 line_index++;

151

152 // Echo character to terminal.

153 usb_uart_putchar(c);

154 }

155 }

156 else if (c == ’\b’ || c == ’\177’) { // If the user pressed backspace

157 #ifdef SHELL_LCD_DEBUG

158 // For debugging purposes, display to the LCD

159 LCD_ClearDisplay();

160 LCD_PrintString("Backspace");

161 #endif

162

163 if (line_index > 0) {

164 // Clear one character on the terminal

165 usb_uart_putstring("\b \b");

166

167 // Discard one character from the command buffer

168 line_index--;

169 }

170 }

171 else if (c == ’\r’) { // If the user has hit the Return/Enter key

172 #ifdef VSHELL_LCD_DEBUG

173 // For debugging purposes, display to the LCD

174 LCD_ClearDisplay();

175 LCD_PrintString("Return");

176 #endif

177

178 // Echo newline to terminal

57

179 usb_uart_putCRLF();

180

181 // Do command

182 linebuf[line_index] = ’\0’;

183 shell_do_command(linebuf);

184

185 // Print a prompt to indicate ready for next command

186 usb_uart_putstring("$ ");

187 line_index = 0;

188 }

189 else { // For any other characters/keypress

190 #ifdef SHELL_LCD_DEBUG

191 char8 strbuf[128];

192

193 // For aid in debugging, print out ASCII codes in hex

194 sprintf(strbuf, " %X", (int)c);

195 LCD_PrintString(strbuf);

196 #endif

197 }

198 }

199

200 /*

201 * shell_handle_recieved_chars()

202 * For every character that has been received, calls handler with

203 * that character. Does nothing if no data has been received since

204 * the previous time this function was called.

205 */

206 void shell_handle_received_chars(void) {

207 while(USBUART_DataIsReady()) { // Check for input data from PC

208 uint8 i, count, buffer[128];

209

210 count = USBUART_GetData(buffer, sizeof(buffer)); // Get any data from PC

211 for (i = 0; i < count; i++) { // For each character recieved

212 shell_handle_char(buffer[i]); // Pass the character to the handler

213 }

214 }

215 }

216

217 /* [] END OF FILE */

shell.h

1 /* ==

2 * shell.h

58

3 * Victor A. Ying and Monica Lu

4 *

5 * a very minimal shell.

6 * ==

7 */

8

9 #ifndef SHELL_H

10 #define SHELL_H

11

12 #define SHELL_MAX_COMMAND_LENGTH 63

13

14 /*

15 #define SHELL_LCD_DEBUG // Uncomment this line to print keypresses to the LCD

16 */

17

18 /*

19 * shell_do_command()

20 * A function for parsing and dispatching command lines.

21 * Must be passed a null-terminated string!

22 */

23 void shell_do_command(const char* line) CYREENTRANT ;

24

25 /*

26 * shell_handle_char()

27 * For every character that has been received, calls handler with

28 * that character. Does nothing if no data has been received since

29 * the previous time this function was called.

30 */

31 void shell_handle_char(char c) ;

32

33 /*

34 * shell_handle_recieved_chars()

35 * For every character that has been received, calls handler with that character.

36 * Does nothing if no data has been received since the previous time this

function

37 * was called.

38 */

39 void shell_handle_received_chars(void) ;

40

41 #endif

42

43 //[] END OF FILE

59

A.7 usb uart.c

1 /* ==

2 * usb_uart.c

3 * Victor A. Ying and Monica Lu

4 *

5 * Manage the serial connection over USB

6 * ==

7 */

8

9 #include <project.h>

10 #include <stdio.h>

11

12 #include "usb_uart.h"

13

14

15 /*

16 * usb_uart_init()

17 * Initialize USBUART for I/O. Should be called after CYGlobalIntEnable;.

18 * NOTE: Make sure mode matches your board voltage!

19 */

20 void usb_uart_init(uint8 mode) {

21 USBUART_Start(0, mode);

22 while(!USBUART_GetConfiguration())

23 ;

24 USBUART_CDC_Init();

25 }

26

27 /*

28 * usb_uart_print_info()

29 * Sends information about the USBUART connection to the USBUART connection.

30 */

31 void usb_uart_print_info(void) {

32 char8 strbuf[128];

33

34 // USBUART info

35 uint32 rate = USBUART_GetDTERate();

36 uint8 stop_bits = USBUART_GetCharFormat();

37 uint8 parity = USBUART_GetParityType();

38 uint8 data_bits = USBUART_GetDataBits();

39 sprintf(strbuf,

40 "UART over USB data rate is %lu bits per second", rate);

41 usb_uart_putline(strbuf);

42 sprintf(strbuf,

43 "UART over USB characters consist of %i data bits",

60

44 (int)data_bits);

45 usb_uart_putline(strbuf);

46 sprintf(strbuf, "UART over USB parity mode; %s",

47 (parity == USBUART_PARITY_NONE) ? "none" :

48 (parity == USBUART_PARITY_ODD) ? "odd" :

49 (parity == USBUART_PARITY_EVEN) ? "even" :

50 (parity == USBUART_PARITY_MARK) ? "mark" :

51 (parity == USBUART_PARITY_SPACE) ? "space" :

52 "?ERROR?");

53 usb_uart_putline(strbuf);

54 sprintf(strbuf, "UART over USB stop bits: %s",

55 (stop_bits == USBUART_1_STOPBIT) ? "1" :

56 (stop_bits == USBUART_1_5_STOPBITS) ? "1.5" :

57 (stop_bits == USBUART_2_STOPBITS) ? "2" :

58 "?ERROR?");

59 usb_uart_putline(strbuf);

60 }

61

62 /*

63 * usb_uart_put*()

64 * Wrappers around Cypress’s provided USBUART_Put*() functions

65 * that wait for previous Tx to finish before continuing.

66 */

67 void usb_uart_putdata(const uint8* pData, uint16 length) {

68 while(!USBUART_CDCIsReady())

69 ;

70 USBUART_PutData((uint8 *)pData, length);

71 }

72 void usb_uart_putstring(const char8* str) {

73 while(!USBUART_CDCIsReady())

74 ;

75 USBUART_PutString((char8 *)str);

76 }

77 void usb_uart_putchar(char8 txDataByte) {

78 while(!USBUART_CDCIsReady())

79 ;

80 USBUART_PutChar(txDataByte);

81 }

82 void usb_uart_putCRLF(void) {

83 while(!USBUART_CDCIsReady())

84 ;

85 USBUART_PutCRLF();

86 }

87

88 /*

61

89 * usb_uart_putline()

90 * An additional helpful function for printing a string followed by CRLF.

91 */

92 void usb_uart_putline(const char8* str) {

93 usb_uart_putstring(str);

94 usb_uart_putCRLF();

95 }

96

97 /* [] END OF FILE */

usb uart.h

1 /* ==

2 * usbuart_helpers.h

3 * Victor A. Ying and Monica Lu

4 *

5 * Functions to manage the serial

6 * connection over USB.

7 * ==

8 */

9

10 #ifndef USB_UART_H

11 #define USB_UART_H

12

13 #include "USBUART.h"

14 #include "shell.h"

15

16 /*

17 * usb_uart_init()

18 * Initialize USBUART (and possibly LCD) for I/O

19 * NOTE: Make sure mode matches your board voltage!

20 */

21 void usb_uart_init(uint8 mode);

22

23 /*

24 * usb_uart_print_info()

25 * Sends information about the USBUART connection to the USBUART connection.

26 */

27 void usb_uart_print_info(void);

28

29 /*

30 * usb_uart_put*()

31 * Wrappers around Cypress’s provided USBUART_Put*() functions

32 * that wait for previous Tx to finish before continuing.

62

33 */

34 void usb_uart_putdata(const uint8* pData, uint16 length);

35 void usb_uart_putstring(const char8* string);

36 void usb_uart_putchar(char8 txDataByte);

37 void usb_uart_putCRLF(void);

38

39 /*

40 * usb_uart_putline()

41 * An additional helpful function for printing a string followed by CRLF.

42 */

43 void usb_uart_putline(const char8* string);

44

45

46 #endif

47

48 //[] END OF FILE

63

B Arduino code for transmitter stations

B.1 Master transmitter station

1 /***

2 master_transmitter.ino

3

4 Communicate with slaves to establish radio communication latency,

5 then start off the sequence of ultrasonic pings.

6

7 Hardware Hookup:

8 The XBee Shield makes all of the connections you’ll need

9 between Arduino and XBee. If you have the shield make

10 sure the SWITCH IS IN THE "DLINE" POSITION. That will connect

11 the XBee’s DOUT and DIN pins to Arduino pins 2 and 3.

12 ***/

13 // We’ll use SoftwareSerial to communicate with the XBee:

14 #include <SoftwareSerial.h>

15

16 #define NUM_TRANSMITTERS 3

17 #define NUM_TESTS 5

18 #define TX_PORT PORTB

19

20 enum {

21 TX_PIN_1 = 12,

22 TX_PIN_2 = 13,

23 TX_PIN_1_MASK = 1u << (TX_PIN_1 % 8u),

24 TX_PIN_2_MASK = 1u << (TX_PIN_2 % 8u),

25 FREQ = 25000u, // Hz

26 PERIOD = 1000000u / FREQ, // s

27 HALF_PERIOD = PERIOD / 2u, // s

28 TIMEOUT = 50000u, // s

29 DURATION = 5000u, // s

30 BAUD_RATE = 9600u, // bps

31 };

32

33

34 // XBee’s DOUT (TX) is connected to pin 2 (Arduino’s Software RX)

35 // XBee’s DIN (RX) is connected to pin 3 (Arduino’s Software TX)

36 SoftwareSerial XBee(2, 3); // RX, TX

37

38 void setup()

39 {

40 pinMode(TX_PIN_1, OUTPUT);

41 pinMode(TX_PIN_2, OUTPUT);

64

42

43 // Set up both ports at 9600 baud. This value is most important

44 // for the XBee. Make sure the baud rate matches the config

45 // setting of your XBee.

46 XBee.begin(BAUD_RATE);

47 Serial.begin(BAUD_RATE);

48 }

49

50 void loop()

51 {

52 int i, j;

53 unsigned long startTime, totalLatTime, averageLatTime, beginning;

54 byte b[4];

55 unsigned long startTotTime = micros();

56

57 for (i = 0; i < NUM_TRANSMITTERS; i++) {

58 totalLatTime = 0u;

59 int successCount = 0;

60 for (j = 0; j < NUM_TESTS; j++) {

61 startTime = micros();

62 XBee.write((char)(’a’ + i));

63 while (!XBee.available() && (micros() - startTime < TIMEOUT));

64 if (XBee.available()) {

65 XBee.read();

66 totalLatTime += (micros()-startTime);

67 successCount++;

68 }

69 //Serial.println(totalLatTime);

70 }

71 if (successCount > 0) {

72 averageLatTime = totalLatTime/(2*successCount);

73 Serial.print("Average Time: ");

74 Serial.println(averageLatTime);

75 XBee.write((char)(’A’ + i));

76 LongToBytes(averageLatTime, b);

77 for (j = 0; j < 4; j++) {

78 XBee.write(b[j]);

79 }

80 beginning = micros();

81 while (!XBee.available() && (micros()-beginning < TIMEOUT));

82 Serial.print("Acknowledgement: ");

83 Serial.write(XBee.read());

84 Serial.println();

85 }

86 }

65

87 XBee.write(’p’);

88 sendPing();

89 Serial.print("Total Time: ");

90 Serial.println(micros()-startTotTime);

91 delay(300);

92 }

93

94 void LongToBytes(unsigned long val, byte b[4]) {

95 b[0] = (byte)((val >> 24) & 0xff);

96 b[1] = (byte)((val >> 16) & 0xff);

97 b[2] = (byte)((val >> 8) & 0xff);

98 b[3] = (byte)(val & 0xff);

99 }

100

101 /*

102 unsigned long BytesToLong(byte b[4]) {

103 return ((unsigned long)(b[0] & 0xFF) << 24) + ((unsigned long)(b[1] & 0xFF) <<

16)

104 + ((unsigned long)(b[2] & 0xFF) << 8) + (unsigned long)(b[3] & 0xFF);

105 }

106 */

107

108 void sendPing() {

109

110 //Serial.println("Sending ping");

111

112 // Send out ping from transmitter

113 unsigned long beginning = micros();

114 unsigned long time = micros() - beginning;

115 unsigned long next = time;

116 while (time < DURATION) {

117 // Turn off TX_PIN_2 and turn on TX_PIN_1

118 TX_PORT = TX_PORT & (~TX_PIN_2_MASK) | TX_PIN_1_MASK;

119 next += HALF_PERIOD;

120 while (micros() - beginning < next)

121 ;

122

123 // Turn off TX_PIN_1 and turn on TX_PIN_2

124 TX_PORT = TX_PORT & (~TX_PIN_1_MASK) | TX_PIN_2_MASK;

125 next += HALF_PERIOD;

126 while ((time = micros() - beginning) < next)

127 ;

128 }

129 Serial.println("Ping sent");

130 }

66

131 /*

132 // ASCIItoInt

133 // Helper function to turn an ASCII hex value into a 0-15 byte val

134 int ASCIItoInt(char c)

135 {

136 if ((c >= ’0’) && (c <= ’9’))

137 return c - 0x30; // Minus 0x30

138 else if ((c >= ’A’) && (c <= ’F’))

139 return c - 0x37; // Minus 0x41 plus 0x0A

140 else if ((c >= ’a’) && (c <= ’f’))

141 return c - 0x57; // Minus 0x61 plus 0x0A

142 else

143 return -1;

144 }

145 */

67

B.2 Slave transmitter stations

1 /***

2 slave_transmitter.ino

3

4 Responds to messages from the master and sends out ultrasonic pings

5 at the appropriate time.

6

7 Hardware Hookup:

8 The XBee Shield makes all of the connections you’ll need

9 between Arduino and XBee. If you have the shield make

10 sure the SWITCH IS IN THE "DLINE" POSITION. That will connect

11 the XBee’s DOUT and DIN pins to Arduino pins 2 and 3.

12 ***/

13 // We’ll use SoftwareSerial to communicate with the XBee:

14 #include <SoftwareSerial.h>

15 #define TX_PORT PORTB

16 #define TRANSMITTER_NUMBER 1

17

18 enum {

19 TX_PIN_1 = 12,

20 TX_PIN_2 = 13,

21 TX_PIN_1_MASK = 1u << (TX_PIN_1 % 8u),

22 TX_PIN_2_MASK = 1u << (TX_PIN_2 % 8u),

23 FREQ = 25000u, // Hz

24 PERIOD = 1000000u / FREQ, // s

25 HALF_PERIOD = PERIOD / 2u, // s

26 DURATION = 5000u, // s

27 TIMEOUT = 50000u, // s

28 BAUD_RATE = 9600u, // bps

29 MAX_LAT_TIME = 20000u, // s

30 SOFTWARE_SERIAL_DELAY = 2000u, // s

31 };

32

33 // XBee’s DOUT (TX) is connected to pin 2 (Arduino’s Software RX)

34 // XBee’s DIN (RX) is connected to pin 3 (Arduino’s Software TX)

35 SoftwareSerial XBee(2, 3); // RX, TX

36 unsigned long latTime;

37

38 void setup()

39 {

40 // Set up both ports at 9600 baud. This value is most important

41 // for the XBee. Make sure the baud rate matches the config

42 // setting of your XBee.

43 XBee.begin(BAUD_RATE);

68

44 //Serial.begin(BAUD_RATE); // Serial for debugging

45

46 pinMode(TX_PIN_1, OUTPUT);

47 pinMode(TX_PIN_2, OUTPUT);

48 }

49

50 void loop()

51 {

52 int i;

53 char c;

54 byte b[4];

55

56 if (XBee.available())

57 { // If data comes in from XBee, send it out to serial monitor

58 c = XBee.read();

59 if (c == (char)(’a’ + TRANSMITTER_NUMBER - 1)) {

60 XBee.write(c);

61 }

62 else if (c == (char)(’A’ + TRANSMITTER_NUMBER - 1)) {

63 for (i = 0; i < 4; i++) {

64 unsigned long beginning = micros();

65 while (!XBee.available() && (micros()-beginning < TIMEOUT));

66 if (XBee.available()) {

67 b[i] = XBee.read();

68 }

69 else {

70 break;

71 }

72 }

73 if (i == 4) {

74 unsigned long temp = BytesToLong(b);

75 if (temp < MAX_LAT_TIME) {

76 latTime = temp;

77 }

78 }

79 XBee.write(c);

80 }

81 else if (c == ’p’) {

82 delayMicroseconds(SOFTWARE_SERIAL_DELAY);

83 sendPing();

84 }

85 }

86 }

87

88 unsigned long BytesToLong(byte b[4]) {

69

89 unsigned long ret = 0u;

90 for (int i = 0; i < 4; i++) {

91 ret += (unsigned long)(b[i] & 0xFF) << 8*(3-i);

92 }

93 return ret;

94 }

95

96 void sendPing() {

97 unsigned long beginning = micros();

98 //Serial.println("Sending ping");

99 while(micros() - beginning < (100000u*TRANSMITTER_NUMBER)-latTime)

100 ;

101

102 // Send out ping from transmitter

103 beginning = micros();

104 unsigned long time = micros() - beginning;

105 unsigned long next = time;

106 while (time < DURATION) {

107 // Turn off TX_PIN_2 and turn on TX_PIN_1

108 TX_PORT = TX_PORT & (~TX_PIN_2_MASK) | TX_PIN_1_MASK;

109 next += HALF_PERIOD;

110 while (micros() - beginning < next)

111 ;

112

113 // Turn off TX_PIN_1 and turn on TX_PIN_2

114 TX_PORT = TX_PORT & (~TX_PIN_1_MASK) | TX_PIN_2_MASK;

115 next += HALF_PERIOD;

116 while ((time = micros() - beginning) < next)

117 ;

118 }

119

120 //Serial.println("Ping sent");

121 }

70

C Arduino code for testing tools

C.1 tx test 2

1 // One Arduino controls two transmitters, alternately sending

2 // out pings from the two of them, simulating two synchronized

3 // transmitter stations sending out pings in turn.

4

5 #define TX_1_PORT PORTD

6 #define TX_2_PORT PORTB

7

8 enum {

9 TX_1_PIN_1 = 2,

10 TX_1_PIN_2 = 3,

11 TX_2_PIN_1 = 10,

12 TX_2_PIN_2 = 11,

13 TX_1_PIN_1_MASK = 1u << (TX_1_PIN_1 % 8u),

14 TX_1_PIN_2_MASK = 1u << (TX_1_PIN_2 % 8u),

15 TX_2_PIN_1_MASK = 1u << (TX_2_PIN_1 % 8u),

16 TX_2_PIN_2_MASK = 1u << (TX_2_PIN_2 % 8u),

17 FREQ = 25000u, // Hz

18 PERIOD = 1000000u / FREQ, // s

19 HALF_PERIOD = PERIOD / 2u, // s

20 DURATION = 5000u, // s

21 SPACING = 100000u, // s

22 CYCLE = 1000000u, // s

23 };

24

25 void setup() {

26 pinMode(TX_1_PIN_1, OUTPUT);

27 pinMode(TX_1_PIN_2, OUTPUT);

28 pinMode(TX_2_PIN_1, OUTPUT);

29 pinMode(TX_2_PIN_2, OUTPUT);

30 }

31

32 void loop() {

33 unsigned long beginning = micros();

34

35 // Send out ping from transmitter 1

36 unsigned long time = micros() - beginning;

37 unsigned long next = time;

38 while (time < DURATION) {

39 // Turn off TX_1_PIN_2 and turn on TX_1_PIN_1

40 TX_1_PORT = TX_1_PORT & (~TX_1_PIN_2_MASK) | TX_1_PIN_1_MASK;

41 next += HALF_PERIOD;

71

42 while (micros() - beginning < next)

43 ;

44

45 // Turn off TX_1_PIN_1 and turn on TX_1_PIN_2

46 TX_1_PORT = TX_1_PORT & (~TX_1_PIN_1_MASK) | TX_1_PIN_2_MASK;

47 next += HALF_PERIOD;

48 while ((time = micros() - beginning) < next)

49 ;

50 }

51

52 // Send out a ping from transmitter 2

53 while ((time = micros() - beginning) < SPACING)

54 ;

55 next = time;

56 while (time < SPACING + DURATION) {

57 // Turn off TX_2_PIN_2 and turn on TX_2_PIN_1

58 TX_2_PORT = TX_2_PORT & (~TX_2_PIN_2_MASK) | TX_2_PIN_1_MASK;

59 next += HALF_PERIOD;

60 while (micros() - beginning < next)

61 ;

62

63 // Turn off TX_2_PIN_1 and turn on TX_2_PIN_2

64 TX_2_PORT = TX_2_PORT & (~TX_2_PIN_1_MASK) | TX_2_PIN_2_MASK;

65 next += HALF_PERIOD;

66 while ((time = micros() - beginning) < next)

67 ;

68 }

69

70 // Wait for end of cycle

71 while (micros() - beginning < CYCLE)

72 ;

73 }

72

C.2 tx test 4

1 // One Arduino controling one transmitters, simulates four transmitters

2

3 #define TX_PORT PORTD

4

5 enum {

6 TX_PIN_1 = 2,

7 TX_PIN_2 = 3,

8 TX_PIN_1_MASK = 1u << (TX_PIN_1 % 8u),

9 TX_PIN_2_MASK = 1u << (TX_PIN_2 % 8u),

10 FREQ = 25000u, // Hz

11 PERIOD = 1000000u / FREQ, // s

12 HALF_PERIOD = PERIOD / 2u, // s

13 NUM_TRANSMITTERS = 4u,

14 DURATION = 5000u, // s

15 };

16

17 unsigned const long SPACINGS[NUM_TRANSMITTERS] =

18 {117766u, 95420u, 77814u, 709001u};

19

20 void setup() {

21 pinMode(TX_PIN_1, OUTPUT);

22 pinMode(TX_PIN_2, OUTPUT);

23 }

24

25 void loop() {

26 static unsigned i = 0;

27 unsigned long beginning = micros();

28

29 // Send out ping from transmitter

30 unsigned long time = micros() - beginning;

31 unsigned long next = time;

32 while (time < DURATION) {

33 // Turn off TX_PIN_2 and turn on TX_PIN_1

34 TX_PORT = TX_PORT & (~TX_PIN_2_MASK) | TX_PIN_1_MASK;

35 next += HALF_PERIOD;

36 while (micros() - beginning < next)

37 ;

38

39 // Turn off TX_PIN_1 and turn on TX_PIN_2

40 TX_PORT = TX_PORT & (~TX_PIN_1_MASK) | TX_PIN_2_MASK;

41 next += HALF_PERIOD;

42 while ((time = micros() - beginning) < next)

43 ;

73

44 }

45

46 // wait until time for next ping

47 unsigned long spacing = SPACINGS[i];

48 i = (i + 1) % NUM_TRANSMITTERS;

49 while (micros() - beginning < spacing)

50 ;

51 }

74

C.3 rx test

1 // Mimics the receiver board, sending a repeating series of four pings

2 // as if from four transmitter stations to the PSoC, for the PSoC to

3 // attempt position calculations.

4

5 enum {

6 RX_PIN = 13,

7 NUM_TRANSMITTERS = 4u,

8 DURATION = 5000u, // s

9 };

10

11 unsigned const long SPACINGS[NUM_TRANSMITTERS] =

12 {117766u, 95420u, 77814u, 709001u};

13

14 void setup() {

15 pinMode(RX_PIN, OUTPUT);

16 }

17

18 void loop() {

19 static unsigned i = 0;

20 digitalWrite(RX_PIN, HIGH);

21 unsigned long beginning = micros();

22 while (micros() - beginning < DURATION)

23 ;

24 digitalWrite(RX_PIN, LOW);

25 unsigned long spacing = SPACINGS[i];

26 i = (i + 1) % NUM_TRANSMITTERS;

27 while (micros() - beginning < spacing)

28 ;

29 }

75

D MATLAB code for mapping

1 if (~isempty(instrfind))

2 fclose(instrfind);

3 delete(instrfind);

4 clear s;

5 end

6

7 s = serial(’COM14’);

8 s.BaudRate = 9600;

9 s.Timeout = 20;

10 s.Terminator = ’LF’;

11 fopen(s);

12

13 figure(1);

14 xlim([-12 12]);

15 ylim([-17 17]);

16 pbaspect([1 1 1]);

17 clear h;

18 h = animatedline(’Color’,’red’,’Marker’,’o’);

19

20 while 1

21 try

22 [str, count, msg] = fgetl(s);

23 if(~isempty(msg))

24 error(msg);

25 end

26 catch err

27 err

28 disp(’A timeout occurred or the user quit the program!’)

29 break;

30 end

31

32 if str < 0

33 break;

34 end

35

36 for i=1:size(str)

37 if str(i) ~= ’X’

38 else

39 str = str(i:end);

40 break;

41 end

42 end

43 if strcmp(str, ’’)

76

44 continue;

45 end

46 [c, num] = sscanf(str, ’%c%f%c%f’, 4);

47 if num == 4

48 x = c(2);

49 y = c(4);

50 if (x ~= 0 || y ~= 0)

51 addpoints(h, x, y);

52 drawnow

53 end

54 end

55 end

56

57 fclose(s);

58 delete(s)

59 clear s

77

	Introduction
	Multilateration
	Time difference of arrival multilateration
	Position calculations
	A closed form solution?
	A least squares regression

	Hardware systems
	Ultrasonics
	Ultrasonic transmitter stations
	Ultrasonic receivers for cars

	Serial radio communication

	Signals
	Transmitted signals and synchronization
	Synchronization
	Sending Pings
	Timeouts and Error Checking

	Digital processing of received signals
	Digital filtering
	Timing

	Testing and debugging scaffolds
	Performance and sources of bad data
	Applications
	Navigation
	H-Bridge
	General autonomous navigation
	Simpler navigation demonstration

	Mapping

	C code compiled in PSoC Creator for car
	main.c
	position.c
	drive.c
	speed.c
	steer.c
	shell.c
	usb_uart.c

	Arduino code for transmitter stations
	Master transmitter station
	Slave transmitter stations

	Arduino code for testing tools
	tx_test_2
	tx_test_4
	rx_test

	MATLAB code for mapping

